

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 150

TIME: 3 hours

SYMBOL	EXPLANATION
A	Accuracy
CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
M	Method
MA	Method with accuracy
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Substitution in a formula

This memorandum consists of 15 pages.

NSC – Memorandum

es	TION 1 [26] Solution				Explanation	AS
CS	Solution				Explanation	12.1.
	Column 1		Column 2	Column 3		12.1.3
	Item		Working details	Cost in rand		12.2.
	Cost of manufacturing the required number of boxes of gloves	A	✓A ✓M 400 × R98,00	✓CA R39 200,00	1A No. of boxes 1M Multiplying 1CA Solution	
	Profit of 25% on the cost price	В	0,25 × R39 200,00	✓CA R9 800,00	1A % as decimal 1CA Solution	
	Sub-total	C=A+B	R39 200 + R9 800	✓CA R49 000,00	1CA Addition	
	20% of the sub-total for transport and administration costs	D	✓A 0,2 × R49 000,00	✓CA R9 800,00	1A % as decimal 1CA Solution	
	Sub-total	E=C+D	R49 000 + R9 800	✓CA R58 800,00	1CA Addition	
	14% VAT (Value Added Tax)	F	0,14 × R58 800,00	✓ CA R8 232,00	1M Calculating % 1CA Solution	
	TOTAL SELLING PRICE OF THE GLOVES (also called Pt, the value of the tender under consideration)	G=E+F	R58 800 + R8 232	✓CA R67 032,00	1CA Final answer (12)	

NSC – Memorandum

Ques	Solution	Explanation	AS
1.2	$P_{S} = 80 \left(1 - \frac{Pt - P \min}{P \min} \right) + 2,5$ $= 80 \left(1 - \frac{67 \ 032 - 56 \ 000}{56 \ 000} \right) + 2,5$ $= 80(0,803) + 2,5 \checkmark S$ $= 66,74 \checkmark CA$	1SF Correct substitution into formula 1S Simplifying inside brackets 1CA Points scored (3)	12.2.1
1.3	$P_{S} = 80 \left(1 - \frac{Pt - P\min}{P\min} \right)$		12.2.1 11.2.3
	-80 (1 66 000 – 56 000) \checkmark SF	1SF Substitution into formula	
	$= 80 \left(1 - \frac{66\ 000 - 56\ 000}{56\ 000} \right) \checkmark SF$	1S Simplifying inside brackets	
	$= 80(0,8214)$ = 65,71 \checkmark CA \checkmark S	1CA Points scored	
	High Five would get the bid because they have a higher score of 66,74. ✓ CA	2CA Conclusion (5)	

Ques	Solution	Explanation	AS
OPTION 1			12.3.1
1.4.1	✓A 10 boxes are packed in the first layer in the box,	1A Ten boxes in each layer	
	Layout of bottom layer: 10 cm 10 cm 8 cm	2A Correct diagram	
	✓CA	(3)	
1.4.2	Length of the container = $5 \times 8 \text{ cm} = 40 \text{ cm}$ $\checkmark \text{CA}$	1CA Length of container	
	Breadth of the container = $2 \times 10 \text{ cm} = 20 \text{ cm}$	1CA Breadth of container	
	The height of the container must be $4 \times$ height of one box.	1CA Height of the container	
	Height of the container = $4 \times 20 = 80$ cm	(3)	
OPTION 2	✓A		
1.4.1	10 boxes are packed in the first layer in the box,	1A Ten boxes in each layer	
	Layout of bottom layer: 20 cm 20 cm 10 cm 10 cm 10 cm 10 cm 10 cm 10 cm	2A Correct diagram	
	To cin	(3)	
1.4.2	Length of the container = 5 × 10 cm ✓CA = 50 cm	1CA Length of container	
	Breadth of the container = $2 \times 20 \text{ cm} \checkmark \text{CA}$ = 40 cm	1CA Breadth of container	
	The height of the container must be $4 \times$ height of one box. Height of the container = $4 \times 8 \checkmark CA$ = 32 cm	1CA Height of the container (3)	
	OTHER OPTIONS ARE POSSIBLE		

	ON 2 [36] Solution	Evalenation	AS
Ques	Solution	Explanation	
2.1.1	Other ingredients like salt, water are also in the chips. These make up the missing grams. ✓ J ✓ J OR	2J Justification	12.2.3 12.4.4
	Any other plausible explanation	(2)	
2.1.2 (a)	Child should be eating $44.5 \times 0.8 \text{ g}$	1M Multiplying	12.1.1 12.4.4
	= 35, 6 g protein ✓A	1A Solution (2)	li-
2.1.2 (b)	Energy provided by chips	1M Calculating %	12.1.1 12.4.4
	$= \frac{2110}{9572} \times 100\% \checkmark M$	1M Denominator	12.4.4
	= 22,0434% ✓CA	1CA Percentage	
	≈ 22,04 % ✓R	1R Rounding off (4)	_
2.1.3		1RT Identifying mass of fat from the cheese and onion chips 1M Multiplying 1A Amount of energy (3)	12.1.1 12.4.4
2.1.4	100g Salt and vinegar chips Carbohydrate and protein content = 54,3 g + 5,2g = 59,5g ✓RT Fat content = 28,6g ✓RT 100g Cheese and onion chips Carbohydrate and protein content	2RT Reading from table	12.1.1 12.2.3 12.4.4
	= $48.7 \text{ g} + 6.8 \text{g} = 55.5 \text{ g}$ Fat content = 36.0 g The salt and vinegar chips satisfy these conditions as they contains more protein and carbohydrates and less fat than the cheese and onion chips $\checkmark\checkmark0$	1RT Reading from table 2O Own opinion	

Copyright reserved

Ques	Solution	Explanation	AS
2.2.1	Cost in rand = R150 + $0.3 \times (800 - 500) / M$ = R150 + R90	1M Substitution	12.2.1
	✓A = R240	1A Simplification (2)	
2.2.2 (a)	Cost in rand $ \checkmark A \checkmark M \qquad \checkmark A \\ = R220 + 0.3 \times \text{(number of megabytes used } -1 000) $	1A Constant value 1M Addition 1A Final equation (3)	12.2.1
2.2.2 (b)	$A = R 220,00 + R 0,30 \times 100^{\checkmark}M$ = R 250 \checkmark CA	1M Substitution 1CA Value of A (2)	12.2.1
2.2.3	MONTHLY COSTS FOR INTERNET ACCESS 450 400 400 350 Pure War 1	2A Any other two point 1CA label	12.2.2

7 NSC – Memorandum

Ques	Solution	Explanation	AS
2.2.4	Option 1 will give her 1 000 MB for R 300 ✓RG ✓RG	1RG Number of MBs for 1GB	12.2.3
	Option 2 will give her approximately 1 270 MB for R 300 (actually = 1 266, 6 MB)	1RG Number of MBs for 500 MB	
	She should choose Option 2. Option 2 gives her the larger number of MB for her money. ✓ J ✓ J	2J Advice (4)	

QUES	TION 3 [31]		
Ques	Solution	Explanation	AS
3.1	Bloemfontein; Johannesburg; Kimberley; Mafikeng; Nelspruit; Pretoria and Polokwane	All 7 correct 3 marks Only 5 correct 2 marks Only 3 correct 1 mark (3)	12.4.3
3.2.1	Mean $25,6 = \frac{23 + 22 + A + 21 + 24 + 23 + 40 + 22 + 22 + 22}{10 \checkmark A}$ $256 = A + 219 \checkmark M$ $A = 37 \checkmark CA$	1M Understanding mean 1A Number of scores 1M Simplification 1CA Value of A (4)	12.4.3
3.2.2	21; 22; 22; 22; 23; 23; 24; 37; 40 \checkmark CA Median = $\frac{22 + 23}{2}$ \checkmark M = 22,5 °C \checkmark CA	1CA Arranging in order (using value calculated in 3.1.1) 1M Finding median 1CA Median (3)	12.4.3
3.2.3	50 % of the cities and towns have temperatures greater than the median.	2A Correct interpretation (2)	12.4.3
3.3	The mean is affected by the two high temperatures. (Durban 37°C and Musina 40°C). Eight of the ten towns and cities have maximum temperatures less than the mean. The median represents the maximum temperatures best. ✓J	2CA Rejecting the mean 1J Conclusion for best representation (3)	12.4.4

Ques	Solution	Explanation	AS
3.4.1	TEMPERATURES FOR 10 CITIES AND TOWNS IN S.A. ON 13/05/09 45 40 35 30 MIN TEMP MAX TEMP Towns and cities	2A Any two cities plotted correctly 1M Using bars 1M Bars drawn adjacent 1A correct graph (5)	12.4.2
3.4.2	Difference in temperature of a town/city = Maximum temp – minimum temp \checkmark M Durban: $37 ^{\circ}\text{C} - 15 ^{\circ}\text{C} = 22 ^{\circ}\text{C} \checkmark \text{A}$	1M Concept 2A Substitutions	12.1.1 12.4.4
	Musina: $40 ^{\circ}\text{C} - 20 ^{\circ}\text{C} = 20 ^{\circ}\text{C} \checkmark \text{A}$ Durban has the greatest difference of 22 $^{\circ}\text{C}$. \checkmark CA	1CA City with greatest difference (4)	
3.5.1	Area of living room = $4 \text{ m} \times 5.25 \text{ m}$	1M Calculating area	12.3.1 12.3.2
	$=21 \text{ m}^2$. \checkmark A	1A Area of living room	
	Output capacity = $21 \times 125 \text{ W} \checkmark \text{M}$ = 2625 W	1M Calculating capacity	
	= 2,625 kW ✓CA	1CA Solution (4)	
3.5.2	$2 \text{ kW} = 2 000 \text{ W} \checkmark \text{C}$	1C Converting	12.3.2
	Size of room = $\frac{2000 \text{ W}}{125 \text{ W per m}^2}$ \checkmark M	1M Dividing	
	$= 16 \text{ m}^2 \checkmark \text{A}$	1A Area (3)	

Copyright reserved

QUES	TION 4 [31]		
Ques	Solution	Explanation	AS
4.1.1	\checkmark RT \checkmark RT $48 534,06 = 1 140,00 + 42 × (B + 57,00) 47 394,06 = 42 × (B + 57,00) \checkmarkCA$	1RT Total amount paid 1RT Number of instalments 1CA Subtracting 1 140,00	12.2.1
	$1\ 128,43 = A + 57,00 \checkmark M$	1M Dividing by 42	
	1071,43 = A ✓CA	1CA Value of B (5)	
4.1.2	Loan cost her R 48 534,06 – R 25 000 RT	1RT Reading from table	12.1.3 12.2.1
	= R 23 534,06 ✓CA	1CA Cost of loan (2)	
4.1.3	$A = R1 \ 562,50 \times 24 = R37 \ 500 \checkmark A$ $P = R25 \ 000$ $i =$ $n = 24$	1A Value of A	12.1.3
	$1 + i = 24 \sqrt{\frac{37\ 500}{25\ 000}} $ \checkmark M	1M Substitution	
	$1 + i = \sqrt[24]{1,5} \qquad \checkmark A$	1A Simplification	
	$1 + i = 1,017 \dots \checkmark A$	1A Simplification	
	$i = 0.017 \dots \text{ per month } \checkmark \text{CA}$	1CA Value of <i>i</i> per month	
	$\therefore i = 0.017 \dots \times 12 \text{ per annum}$		
	= 0,204 per annum ✓CA	1CA Value of <i>i</i> per month	
	= 0,204× 100%		
	= 20,445 %		
	≈ 20,45% ✓ CA	1CA % (7)	

Ques	Solution	Explanation	AS
4.2.1	Deposit = 10% of R 25 000,00 \checkmark M	1M Calculating 10%	12.1.1
	= R 2 500,00	1A Value of deposit (2)	
4.2.2	$P = \text{Balance} = \text{R } 25\ 000,00 - \text{R } 2\ 500,00$	(2)	12.1.3
	= R 22 500,00	1CA Balance after deposit	
	i = 33% per annum		
	= 0,33 per annum		
	$= \frac{0.33}{12} \text{ per month}$		
	= 0,0275 per month ✓A	1A Value of <i>i</i>	
	$n = 24 \text{ months} \checkmark A$	1A Value of <i>n</i>	
	Amount owing = $A = P(1 + i \times n)$ \checkmark SF		
	$= R 22 500(1 + 0.0275 \times 24)$	1SF Substituting value of P	
	= R 37 350,00	1CA Amount to be paid	
	OR		
	n = 24 months = 2 years	1C Converting 24 months to 2 yrs and 33% as 0,33	
	Amount owing = $A = P(1 + i \times n)$ \checkmark SF		
	$= R 22 500(1 + 0.33 \times 2)$	1SF Substitution into formula	
	= R 37 350,00	1CA Amount to be paid	
	Monthly repayment = $\frac{R37350}{24}$ \checkmark M	1M Finding monthly repayment	
	24 = R 1 556,25 ∠CA	1CA Monthly repayment (5)	
4.2.3	Total cost = R 2 500,00 + R 37 350,00 \checkmark M	1M Adding	12.1.1
	= R 39 850,00	1CA Total to be paid (2)	

$\begin{array}{c} 12 \\ NSC-Memorandum \end{array}$

Ques	Solution	Explanation	AS
4.3	The total amount re-paid using the loan option is R 40 008,00.		12.2.1
	The total amount repaid using the hire purchase option is R 39 850		
	Mosima should take the hire purchase option because she would pay R 158 less than the loan	1CA Most economical option	
	option. $\checkmark\checkmark$ J	2J Justification of option	
	OR ✓CA Mosima would take the loan option because, although monthly repayments are higher, the	1CA Most economical option	
	initiation fee of R 1 140 is lower than the deposit of R 2 500.	2J Justification of option (3)	
4.4	Length of box = $60 \text{ cm} + 1 \text{ cm} = 61 \text{ cm}^2 \text{ M}$	1M Finding dimensions	12.3.1
	Height of box $= 2 \text{ cm} + 5 \text{ cm} + 45 \text{ cm} + 1 \text{ cm}$		
	= 53 cm ✓A	1 A Correct dimensions	
	Width of box = $20 \text{ cm} + 1 \text{ cm} = 21 \text{ cm} \checkmark A$	1A Correct dimensions	
	Volume of box = $61 \text{ cm} \times 53 \text{ cm} \times 21 \text{ cm}^{\prime} \text{M}$	1M Substitution	
	$= 67.893 \text{ cm}^3$	1CA Volume (5)	

QUESTI	ON 5 [26]		
Ques	Solution	Explanation	AS
5.1.1	Number of houses surveyed = 723+219+534+427+298+291 ✓A = 2492 ✓CA	1A Addition 1CA Solution (2)	12.1.1
5.1.2 (a)	P(2 or fewer people) $= \frac{\text{number of houses occupied by 2 or fewer people}}{\text{number of houses surveyed}}$ $= \frac{723 + 219 + 534}{\text{VS}}$	1S Substitution	12.4.5
	$= \frac{728 + 219 + 631}{2492}$ $= \frac{1476}{2492} = \frac{369}{623}$	1A Addition 1A Denominator (3)	
5.1.2 (b)	P(more than 2 people) = $1 - \frac{1476}{2492}$ \checkmark M = $\frac{1016}{2492} = \frac{254}{623}$ P(2 or fewer people) > P(more than 2 people)	1 M Method 1S Simplifying fraction 1CA Explanation	12.4.5
	So, a greater probability is of choosing a house with 2 or fewer staying in it OR P(more than 2 people) = $\frac{427 + 298 + 291}{2492}$ M	1J Justification OR 1 M Method	
	$= \frac{1016}{2492} \stackrel{\checkmark}{=} \frac{254}{623}$ P(2 or fewer people) > P(more than 2 people) \checkmark CA	1A Addition 1CA Explanation	
	So, a greater probability is of choosing a house with 2 or fewer staying in it \checkmark J	1J Justification (4)	

Ques	Solution	Explanation	AS
5.2.1	Length of patio = $7 \text{ m} - (1.5 \text{ m} + 3 \text{ m}) = 2.5 \text{ m}$	1A Length of patio	12.3.1
	Breath of patio = $6 \text{ m} - 4 \text{ m} = 2 \text{ m} \checkmark \text{A}$	1A Breadth of patio	
	Area of patio = length \times breadth		
	$= 2, 5m \times 2m$ $= 5 \text{ m}^2 \checkmark \text{CA}$	1CA Solution	
	Volume of rectangular prism = area of base \times height		
	$0.375 \text{ m}^3 = 5 \text{ m}^2 \times \text{thickness}$	1SF Substitution in the formula	
	thickness = $\frac{0.375 m^3}{5 m^2}$		
	= 0,075 m ✓A	1A Thickness	
	= 75 mm ✓C	1C Conversion to mm (6)	

Ques	Solution	Explanation	AS
5.2.2	Length of part of kitchen containing the L-shaped cupboard		12.3.1
	= 1,5 m ✓A	1A Length of first part of kitchen	
	Area of kitchen containing the L-shaped cupboard $ \checkmark A \qquad \checkmark A $ $ = (1.5 \text{ m} - 0.45 \text{ m}) \times (2 \text{ m} - 0.45 \text{ m}) $	1A Length to be tiled	
	$= (1.5 \text{ m} - 0.45 \text{ m}) \times (2 \text{ m} - 0.45 \text{ m})$ $= 1.05 \text{ m} \times 1.55 \text{ m}$	1A Breadth to be tiled	
	$= 1,6275 \text{ m}^2 \checkmark \text{CA}$	1CA Area	
	Length of part of the kitchen containing the stove and sink	1A Length of second	
	= 1,5 m ✓A	party of kitchen	
	Area of kitchen containing the stove and sink $ \checkmark M \qquad \checkmark M $ $ = (2 \text{ m} \times 1.5 \text{ m}) - 0.45 \text{ m}^2 - (0.45 \text{ m} \times 1 \text{ m}) $	1M Area of kitchen containing the stove and sink 1M Area of sink	
	$= 3 \text{ m}^2 - 0.45 \text{ m}^2 - 0.45 \text{ m}^2$	TWI AICA OI SIIIK	
	$= 2.1 \text{ m}^2 \checkmark \text{CA}$	1CA Area	
	Area to be tiled		
	= $(4 \text{ m} \times 4 \text{ m}) + 1,6275 \text{ m}^2 + 2,1 \text{ m}^2$		
	$= 16 \text{ m}^2 + 1,6275 \text{ m}^2 + 2,1 \text{ m}^2$	1A Area of living room	
	✓CA = 19,7275 m ²	1CA Area	
	\checkmark R $\approx 19,73 \text{ m}^2$	1R Rounding off	
	17,70 111	(11)	

TOTAL: 150