

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY

NOVEMBER 2008

MEMORANDUM

MARKS: 200

1

10

10

This memorandum consists of 19 pages.

Please turn over

QUESTION 1: MULTIPLE CHOICE QUESTIONS

(Learning Outcome 3: Assessment Standards 1 – 9)

-			
1.1	D		✓ (1)
1.2	С		✓ (1)
1.3	В		✓ (1)
1.4	А		✓ (1)
1.5	А		✓ (1)
1.6	С		✓ (1)
1.7	D		✓ (1)
1.8	С		✓ (1)
1.9	В		✓ (1)
1.10	А		✓ (1)
1.11	D		✓ (1)
1.12	D		✓ (1)
1.13	А		✓ (1)
1.14	В		✓ (1)
1.15	D		✓ (1)
1.16	С		✓ (1)
1.17	D		✓ (1)
1.18	D		✓ (1)
1.19	В		✓ (1)
1.20	А		✓ (1)
			[20]

QUESTION 2: FORCES AND SYSTEMS AND CONTROL

(Learning Outcome 3: Assessment Standards 6 and 8)

2.1 GEARS

2.1.1 CALCULATE THE GEAR RATIO

$GearRatio = \frac{Product \ of \ number \ of \ teeth \ of \ the}{Product \ of \ number \ of \ teeth \ of \ the}$	driven gear ✓
$\frac{1}{Product of number of teeth of the of $	driving gear
_ 86×70	
$=\frac{1}{35\times43}$	
= 4 : 1	✓ (2)

2.1.2 CALCULATE THE OUTPUT SPEED OF THE SPINDLE

 $\frac{Speed of Driver}{Speed of Driven} = \frac{Product of number of teeth of the driven gears}{Product of number of teeth of the driving gear} \qquad \checkmark$ $\frac{840}{N_{spindle}} = \frac{86 \times 70}{35 \times 43}$ $N_{spindle} = \frac{840}{4}$ $N_{spindle} = 210 \ rpm \qquad \checkmark \qquad (2)$

2.1.3 CALCULATE THE SPINDLE TORQUE

$$P = \frac{2\pi NT}{60}$$

$$T = \frac{P \times 60}{2\pi N}$$

$$= \frac{5\ 000 \times 60}{2\pi \times 210}$$

$$= 227,36\ Nm$$

$$\checkmark (2)$$

2.1.4 Yes, it is suitable for the gear train because both the spindle speed and torque are higher than the desired/required one. $\checkmark \checkmark$ (2)

2.2 LEVERS

2.2.1 CALCULATE THE EFFORT TO LIFT THE HANDLE OF THE WHEELBARROW

Taking moments about the fulcrum

$\sum of \ clockwise \ moments = \sum of \ the \ anti-clowise \ moments$ $1000 \times 0.5 = E \times 1.5$		
E = 333,33 N	\checkmark	(4)

2.2.2 CALCULATE THE MECHANICAL ADVANTAGE (MA)

Mechanical Advantage (MA) = $\frac{Load}{Effort}$		
$MA = \frac{1000}{333,33}$	\checkmark	
333,33		
= 3	\checkmark	(2)

2.2.3 CALCULATE THE WORK DONE

<i>Work done = Load</i> x <i>distance</i>	
$= 333,3 \ge 0,2$	\checkmark
= 66,67 Joule	✓ (2)

2.2.4 CALCULATE THE POWER

$Power = \frac{Workdone}{time}$	
$=\frac{66,67}{3}$	\checkmark
= 22,22 W	✓ (2)

- 2.2.5 Less effort is used because the efficiency is high.
 The system is having a leverage advantage of 3:1
 - A small force (effort) equal to (one third) was required to lift the load.

~

(3)

2.3 STRESS AND STRAIN (YOUNG'S MODULUS)

2.3.1 CALCULATE THE TOTAL LENGTH

$$Total Length = 350 + 150 \qquad \checkmark = 500 \, mm \, or \, 0.5 \, m \qquad \checkmark (2)$$

2.3.2 CALCULATE THE STRESS AT SECTION A AND SECTION B

$$A_{A} = \frac{\pi D_{A}^{2}}{4}$$

$$= \frac{\pi \times 0.05^{2}}{4}$$

$$= 1.96 \times 10^{-3} \text{ m}^{2}$$
(6)

$$\sigma_{A} = \frac{F}{A_{A}}$$

$$= \frac{150 \times 10^{-3}}{1,96 \times 10^{-3}}$$

$$= 76,53 \times 10^{-6} Pa$$

$$= 76,53 MPa$$

A _B =
$$\frac{\pi D_{B}^{2}}{4}$$

= $\frac{\pi \times 0.04^{2}}{4}$
= 1.26 × 10⁻³ m²

$$\sigma_{B} = \frac{F}{A_{B}}$$

$$= \frac{150 \times 10^{-3}}{1,26 \times 10^{-3} \text{ m}^{-2}}$$

$$= 119,05 \times 10^{-6} \text{ Pa}$$

$$= 119,05 \text{ MPa}$$

√

√ √

 \checkmark

✓ (6)

2.3.3 CALCULATE THE STRAIN INDUCED IN SECTION A AND B

$$\varepsilon_A = \frac{\sigma_A}{E}$$
$$= \frac{76,53 \times 10^6}{80 \times 10^9}$$
$$= 0.96 \times 10^{-3}$$

$$\varepsilon_{B} = \frac{\sigma_{B}}{E}$$

$$= \frac{119,05 \times 10^{6}}{80 \times 10^{9}}$$

$$= 1,49 \times 10^{-3}$$
(2)

2.3.4 CALCULATE THE TOTAL FINAL LENGTH OF THE PIN

$$\varepsilon_{A} = \frac{\Delta L_{A}}{OL_{A}}$$

$$\Delta L_{A} = \varepsilon_{A} \times OL_{A}$$

$$= 0.96 \times 10^{-3} \times 350$$

$$= 0.34 mm$$

$$\varepsilon_{B} = \frac{\Delta L_{B}}{OL_{B}}$$

$$\Delta L_{B} = \varepsilon_{B} \times OL_{B}$$

$$= 1,49 \times 10^{-3} \times 150$$

$$= 0,22 mm$$

$$\zeta$$

Final Length = Total length +
$$\Delta L_A$$
 + ΔL_B
= 500 + 0,34 + 0,22
= 500,56 mm \checkmark (5)

2.3.5 The resistance to strain will be higher and the elongation will \checkmark ✓ (2) therefore be less.

 \checkmark

2.4 HYDRAULICS

2.4.1 CALCULATE THE PRESSURE APPLIED TO PISTON A

Pressure at piston A = Pressure at piston B

Area of piston A =
$$\frac{\pi d^2}{4}$$

= $\frac{\pi (70 \times 10^{-3})^2}{4}$
= 3,85 × 10⁻³ m²

Pressure at A =
$$\frac{\text{Force at A}}{\text{Area at A}}$$

= $\frac{600}{3,85 \times 10^{-3}}$ \checkmark (3)
= 155,84 kPa

2.4.2 CALCULATE THE DISTANCE 'X' OF PISTON B

NB: volume in cylinder A is equal to the volume in cylinder B.

$$Volume_{A} = Area_{A} \times stroke \ length_{A}$$
$$V_{A} = A_{A} \times L_{A}$$
$$V_{A} = 3,85 \times 10^{-3} \times 65 \times 10^{-3}$$
$$= 0,25 \times 10^{-3} \text{ m}^{3} \qquad \checkmark$$

Note $V_A = V_B$

$$A_{B} = \frac{\pi d^{2}}{4}$$

$$A_{B} = \frac{\pi \times (200 \times 10^{-3})^{2}}{4}$$

$$A_{B} = 31.4 \times 10^{-3} m^{2}$$

$$V_{B} = A_{B} \times L_{B}$$

$$0,25 \times 10^{-3} = 31.4 \times 10^{-3} \times L_{B}$$

$$L_{B} = 7,96 \times 10^{-3} m$$

$$= 7,96 mm$$
(4)

2.4.3 If the length is halved there will be no effect on the system. The ✓ pressure will still be the same throughout the system and the same volume will be reduced, meaning the distance 'x' will still be the ✓√ same.

2.4.4 **Any two of the following:**

Hydraulic jack
Brakes of a motor car
Clutch of a motor car
Any other relevant example

(any 2 x 1) (2) [50]

QUESTION 3: TOOLS AND EQUIPMENT

Learning Outcome 3: Assessment Standard 2)

3.1 BRINELL HARDNESS TEST

1 = Test piece	\checkmark	
2 = Load	\checkmark	
3 = Hardened steel ball or ball	\checkmark	
4 = Diameter of impression or ball diameter or indentation	\checkmark	(4)

3.2 DETERMINING CYLINDER LEAKAGE TEST

Tracing	Causes	
Listen at the carburetor for a hissing	Inlet valve is leaking ✓	
noise 🗸		
Listen at the exhaust pipe for a	Exhaust valve is leaking ✓	
hissing noise ✓	_	
Listen for a hissing noise in the	Piston ring is warn	
dipstick hole ✓		
Remove the filler cap on the tappet	Rings are worn ✓	
cover and listen for a hissing noise \checkmark	_	
If you see bubbles in the radiator	The cylinder head gasket is blown	
water 🗸	\checkmark	

(10)

(3)

(3)

[20]

3.3 PRESSURE TESTER

- It is used to determine the test pressure of a pressure vessel
- If there is a pressure drop after 20-30 minutes it means that there is a leakage in the valves or seams.
- The test is carried out on vessels containing either air or fluids

CYLINDER LEAKAGE TESTER

- It is used to determine any leak through air intake valve, an exhaust valve, head or block and excessive leakage of the piston rings.
- If the tester shows a pressure drop after 20-30 minutes, it means that there is a leakage in the cylinder.
- This test is carried out only on internal combustion engines.

✓

 \checkmark

QUESTION 4: MATERIALS

(Learning Outcome 3: Assessment Standard 3)

4.1 A **NON-FERROUS ALLOY** is a metal that has a combination of two or more ✓ non-ferrous metals, which are melted together to form one alloy ✓ (2)

4.2 ALLOYS

4.2.1 Aluminium Bronze

Composition	Properties	Uses
Consists of copper and	Any one of the	Any one of the
aluminium 🗸	following:	following:
	 Ductile ✓ 	General
	 Malleable ✓ 	engineering 🗸
	 Corrosion resistant ✓ 	 Ship building ✓
	 Tough ✓ 	 Pipe lines √
	• Hard ✓	• Taps and valves ✓
		 Cooking utensils ✓

4.2.2 Duralumin

Duraiumin		
Consists of copper	Any one of the	Any one of the
manganese	following:	following:
magnesium and	 Very strong ✓ 	 Forging ✓
aluminium 🗸	Light ✓	 Stamping ✓
	 Hardens with age ✓ 	Bars ✓
		 Sheets ✓
		Tubes ✓
		Rivets ✓

1

٦

4.2.3 Carbon fibres

Carbon fibres		
Produced from	Any one of the following:	Any one of the following:
polymere PAN	 Low density ✓ 	 Airplane body ✓
(Polyacrylonitrile) 🗸	 Light weight ✓ 	 Racing car bodies ✓
	 Resistant to 	 Canopies of light
	corrosion√	drive vehicles(LDV)
	 Stiffest and strongest 	\checkmark
	reinforcing fibre 🗸	

4.3 NYLON PROPERTIES

- Needs no lubrication
- Shock resistant
- No maintenance
- Very light in weight
- Easy to machine

(3)

(3)

(3)

(Any 3 x 1) (3)

4.5

11 NSC – Memorandum

4.4 Polyvinylchloride (PVC)

	(Any 3 x 1)		(3) [20]
• • •	Control linkages / arm Medical appliances Nonstick coatings Electrical insulation Upholstery	\checkmark	
•	Bushes for steering columns	√	
•	Vice jaws	✓	
•	Crankshaft thrust washers	√	
•	Pipe connections	✓	
•	Bearings	✓	
•	Gears	✓	
TEFL	ON USES		
	(Any 3 x 1)		(3)
•	Rigid but flexible Corrosion resistance	\checkmark	
•	Good impact and weatherproof attributes	✓	
•	Excellent electrical insulation properties	✓	
•	Unplasticised PVC has good chemical resistance and weather resistance. It is stiff, hard, tough, lightweight, has a wide colour range, needs to be stabilised for outdoor use and building applications	✓	
•	Can be plasticised to make it soft, flexible for flooring, medical products and good electrical insulator	√	
•	Highly versatile polymer	\checkmark	

5.2

QUESTION 5: SAFETY, TERMINOLOGY AND JOINING METHODS

(Learning Outcome 3: Assessment Standards 1, 4 and 5)

5.1 HYDRAULIC PRESS SAFETY

•	Make sure the object to be pressed is firmly secured	\checkmark	
•	Make sure that the pins holding the lower beam is fitted properly	\checkmark	
•	Check pins for wear	\checkmark	
•	Check for leaks at the hydraulic pump ram and including the hose	\checkmark	
•	Check that the cable to lift the beam is in good order	\checkmark	
•	Make sure area around the press is clean and free from oil and grease	✓	
	(Any 3 x 1)		(3)
ARC	WELDING SAFETY		

- During arc welding the whole body should be protected against infrared and ultra-violet rays given off when arc welding
 - Because ultra-violet rays can cause blindness and skin cancer, the complete head must be protected
 - A welder should wear a welding hood fitted with the filter lens. Under the hood the welder should wear safety goggles as a protection against splattering and chipping when the hood is raised
 - Wear flameproof gauntlet, gloves, flameproof apron or leather, asbestos or other non-flammable materials, because of hot sparks
 - Do not use gloves to carry hot metal; use a pair of pliers
 - Use fire-resistant leggings and safety boots to protect legs and feet

(Any 3 x 1) (3)

~

5.3 MILLING MACHINE SAFETY

•	Make sure that all guards are in place	\checkmark	
•	Do not use a machine or come close to its moving parts while wearing loose clothing	✓	
•	Check that there is no oil or grease on the floor around the machine	\checkmark	
•	Do not leave spanners or keys on rotary parts	\checkmark	
•	Never apply a wrench to revolving work	\checkmark	
•	Always clamp work pieces and holding devices safely and firmly	\checkmark	
•	Do not use your hands to remove cutting while a machine is in motion	\checkmark	
•	Never adjust the cutting tool while the machine is running	\checkmark	
•	Resist the habit of leaning on machinery	\checkmark	
•	Do not attempt to stop a machine by placing your hand on the chuck while the machine is slowing down	✓	
•	Give attention to cutting-fluid control before switching on a machine	✓	
	(Any 4 x 1)		(4)

5.4 ULTRASONIC INSPECTION

1 = Initial sound pulse / Welding defect wave	\checkmark	
2 = Defect sound echo / Reflection wave	\checkmark	
3 = Oscilloscope / Screen	\checkmark	
4 = Calibration of screen / Baseline	\checkmark	
5 = Search pattern / Zig zag pattern of transducer	\checkmark	
6 = Ultrasonic search unit / Ultrasonic transducer	\checkmark	
7 = Ultrasonic sound wave / Movement of ultrasonic wave	\checkmark	
8 = Defect / Welding defect / Weld	\checkmark	(8)

5.5	DE	ELD EFECT/ ENTITY	CAUSES/INTERPRET	CORRECTION METHOD/EVALUATION	
5	.5.1 Po [If an ind sw ard		 Any one of the following: speed too fast ✓ current too low ✓ insufficient pudding time ✓ faulty electrode ✓ high sulphur or other impurities in metal ✓ impaired base metal ✓ short arc with exception of low hydrogen and stainless steel ✓ 	 Any one of the following use correct current ✓ hold a longer arc ✓ use low hydrogen electrodes ✓ check for impurities in base metal ✓ allow for sufficient puddling time for gases to escape ✓ weave the weld ✓ use correct electrode for the job ✓ 	(3)
5	.5.2 [lf ind sw ard	ag inclusion ✓ Porous weld ad Slag clusion are vapped ound it is sceptable]	 Any one of the following: included angle is too narrow ✓ rapid chilling ✓ weld temperature is too low ✓ high viscosity of molten metal ✓ 	 Any one of the following: preheat metal ✓ slag not removed from previous run weld ✓ increase included angle✓ 	(3)
5		complete netration ✓	 Any one of the following: speed too fast ✓ joint design faulty ✓ electrodes too large ✓ current too low ✓ 	 Any one of the following: use correct current to obtain desired penetration and weld slowly ✓ calculate the electrode penetration properly ✓ select correct electrode according to welding groove ✓ leave enough free space at the bottom of the weld ✓ 	(3)
5	.5.4 Un	ndercutting ✓	 Any one of the following: faulty electrode manipulation ✓ current too high ✓ arc length too long ✓ speed of weld too fast ✓ 	 Any one of the following: use a uniform weave in butt welding√ do not use a too large electrode √ avoid excessive weaving √; current to be moderate and weld slowly √ hold the electrode at a safe distance from the vertical plane when making a horizontal fillet weld √ 	(3)

5.6 CALCULATION OF THE FEED ON A MILLING MACHINE

$$D = \frac{100}{1000}$$

$$= 0.1m$$

$$V = \pi DN$$

$$N = \frac{V}{\pi D}$$

$$= \frac{40}{\pi \times 0.1}$$

$$= 127.32 \text{ r / min}$$

$$f = f_1 \times T \times N$$

$$= 1,06 \times 18 \times 127,32$$

$$= 137,51 \text{ mm / min}$$

$$= 138 \text{ mm / min}$$
(5)

5.7 INDEXING

	HOLE CIRCLES										
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66

STANDARD CHANGE GEARS											
24 x 2	28	32	40	44	48	56	64	72	86	100	

5.7.1 Simple indexing: Use N = 100

Indexing =
$$\frac{40}{100} = \frac{2}{5} \times \frac{5}{5} = \frac{10}{25}$$
 (3)

No full turns and 10 holes in a 25 hole circle

Can accept a different hole circle e.g. Indexing = $\frac{40}{100}$ = $\frac{2}{5}$ × $\frac{6}{6}$ = $\frac{12}{30}$ No full turns and 12 holes in a 30 hole circle

Copyright reserved

✓

5.7.2 Change gears :
$$\frac{Dr}{Dv} = (N - n) \times \frac{40}{N}$$

 $= (100 - 103) \times \frac{40}{100}$
 $= \frac{-120}{100}$
 $= \frac{-6}{5} \times \frac{8}{8}$
 $= \frac{-48}{40}$

[can accept final answer if – is left out]

5.7.3 Meaning of + and – signs

- +: The index plate is rotating in the same direction as the index crank handle
- +: Because more teeth are required the index plate turns in the same direction as the crank handle
- +: This will compensate (deduct) the teeth
- -: The index plate is rotating in the opposite direction as the index crank handle
- -: Because fewer teeth are required the index plate turns in the opposite direction as the crank handle.
- -: The negative rotation will compensate for the addition of teeth.

(6)

(6)

 \checkmark

 \checkmark

√

✓

<

 \checkmark

[50]

6.2

6.3

17 NSC – Memorandum

QUESTION 6: TURBINES AND MAINTENANCE

(Learning Outcome 3: Assessment Standards 7 and 9)

6.1 NEEDS OF LUBRICATING OIL

• • •	Viscosity must be correct It must resist corrosion It must prevent rust It must avoid forming scum		✓ ✓ ✓ ✓	
•	Resist carbon scum forming Must prevent oxidation		√ √	
•	Must resist extreme pressures and temperatures	(any 4 x 1)	✓	(4)
POUF	R POINT refers to the lowest temperature at which oil will flow	N. 🗸	∕ √	(2)
CUT	TING FLUIDS			
	Carry away the heat generated by machining process Acts as a lubricant Prevents the chips from sticking and fusing to the cutter tee Improve quality of the finish of machine surface To keep the work piece cool To keep the cutting tool cool To obtain a higher cutting speed It gives the cutting tool a longer lifespan Does not rust the machine Helps to wash away the chips of the metal being removed work piece, thus keeping the cutting edge of the cutting tool	d from the	$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	

(any 4 x 1) (4)

6.4 Draining and filling gearbox oil procedure

•	It is advisable to drain the gearbox oil immediately after the car has been driven, that is when the oil is warm. Oil will flow freely	✓	
•	Locate the filler plug on the side of the gearbox casing and wipe the		
	plug and area around it clean. Place tray under the gearbox	\checkmark	
•	Ensure that the spanner fits snugly around the filler plug	\checkmark	
•	Loosen plug	\checkmark	
•	Remove the filler plug	\checkmark	
•	Remove the drain plug well fitting spanner in the base of the gearbox	\checkmark	
•	Allow oil to drain out of the gearbox into the drain pan	\checkmark	
•	Clean the drain plug and make sure to fit a new sealing washer	\checkmark	
•	Replace the drain plug and make sure it is tight	\checkmark	
•	Refill the gearbox with the recommended oil to the base of the filler		
	plug	\checkmark	
•	Allow excess oil to trickle out and refit the filler plug	\checkmark	(10)

6.5 Blower

6.5.1	Roots blower	✓	(1)
6.5.2	Labels		
	 Inlet Rotor Casing Outlet 	\checkmark	(4)
6.5.3	 Operation When the engine runs, the rotor rotates. Air is trapped between the rotor and aluminium casing This compressed air is carried around the outside of the rotor and is pushed into a decreasing volume This raises the pressure of the air with the rotational speed of the rotors The air is forced into the inlet manifold and then fed into the cylinders 	 <	(5)

6.6 SUPERCHARGER

6.6.1 Advantages of a supercharger

- More power is obtained compared to a similar vehicle without supercharger
- Supercharged engines are more economical per given kilowatt output
- Less fuel is used compared to engine mass
- Power loss is eliminated above sea level

(Any 2 x 1) (2)

6.6.2 Disadvantages of supercharger

- A small amount of power is lost in order to drive the ✓ supercharger because it uses the engine power to drive it
- Higher fuel consumption if the power generated is not fully ✓ used, as in the case of passenger vehicles
- Due to the compression of the air this results in an ✓ increase in air temperature causing a decrease in the density of the inlet charge.
- The lifespan of the engine is decreased because of higher ✓ cylinder pressure, which increases the load on the engine components

(Any 2 x 1 = (2))

6.7 Operation of the turbo-charger

- The energy at which the exhaust gases rush out of the exhaust is wasted
- This hot expanding gases from the engine is routed in the direction of the turbine wheel through a scroll-like housing, in such a manner as to enable the wheel to spin at very high speed
- The gases are then channeled out of the housing and wheel assembly into the normal exhaust system
- As the turbine wheel spins, it turns a common shaft, which in turn spins the other fan called the impeller
- The impeller and its scroll housing acts as a compressor drawing air or air and fuel mixture in through the inlet compressing and delivering it through the output and the induction passage then into the cylinders under pressure
- This boosted pressure delivered to the cylinders increases the volumetric efficiency of the engine as well as the engine performance ✓ (6)

[40]

TOTAL: 200

✓

1