

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

MEMORANDUM

NOVEMBER 2008

......

MARKS: 150

SYMBOL	EXPLANATION
А	Accuracy
CA	Consistent accuracy
С	Conversion
J	Justification (Reason/Opinion)
М	Method
MA	Method with accuracy
Р	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Substitution in a formula

This memorandum consists of 22 pages.

EXTERNAL MODERATOR MR. M. A. HENDRICKS EXTERNAL MODERATOR MR. I. CASSIM

INTERNAL MODERATOR MRS J. SCHEIBER

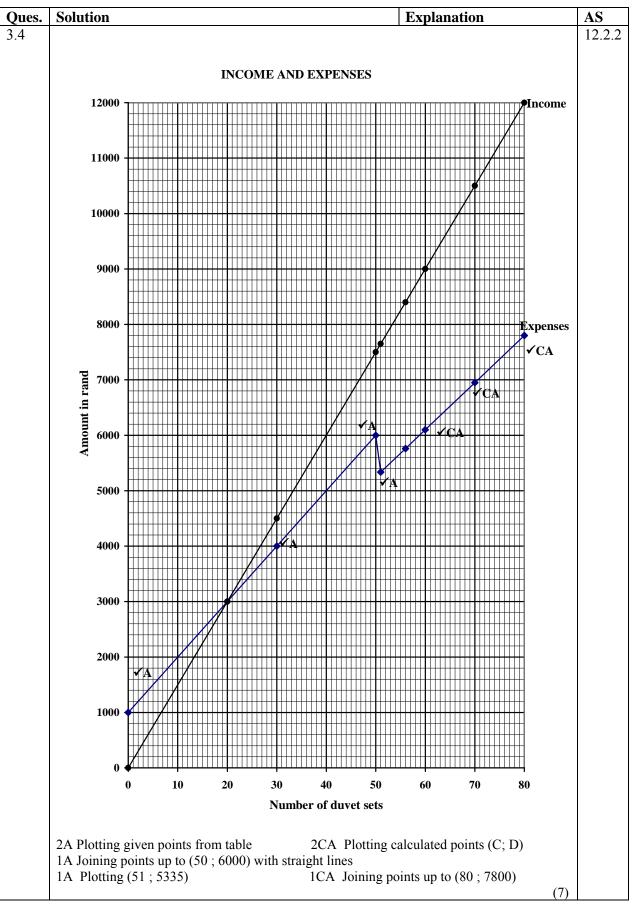
Copyright reserved

Please turn over

QUES	QUESTION 1 [23]			
Ques	Solution	Explanation	AS	
1.1	$\mathbf{A} = 3 \times 3 \qquad \checkmark \mathbf{CA}$ $= 9$	1M Multiplication 1CA Solution	12.2.1	
	$\checkmark \mathbf{M} \\ \mathbf{B} = 180 \div 3 = 60 \checkmark \mathbf{CA}$	1M Division 1CA Solution (4) Divide by 3 in A - max 1 Multiplying by 3 in B - max 1		
		ANSWER ONLY FULL MARKS	12.2.1	
1.2	The number of girls = 3×2550 \checkmark MA = 7650 \checkmark CA The total number of learners = 7650 + 2550	1MA Multiplication 1CA Solution	12.2.1	
	$= 10\ 200 \checkmark CA$	1CA Solution		
	OR			
	Total number of learners = 4×2550 $\checkmark M \checkmark A$ = 10 200 $\checkmark CA$	1M Multiplication1A Four times1CA SolutionANSWER ONLY: FULL MARKS		
1.3.1	Dina's median mark = $\left(\frac{58+62}{2}\right)\% \checkmark \mathbf{M}$	1M Concept of median	12.4.3	
	$= 60 \% \checkmark CA$	1CA Median mark (2)		
		NO PENALTY FOR OMITTING % MAXIMUM 1 IF SUBTRACT ORDER OF OPERATIONS INCORRECT – 1 MARK (89; 91)		
		ANSWER ONLY: FULL MARKS		
1.3.2	Mpho's mean mark = $\frac{36 + 42 + 48 + 58 + 60 + 61 + 62 + 76 + 86}{\%}$ %	1M Concept of mean	12.4.3	
	9			
	$=\frac{529}{9} \% \mathbf{CA}$	1CA Correct addition		
	≈ 58,78 % ✓ CA	1CA Mean (3)		
		If Dina's mean calculated – max 2 Data recorded incorrectly – max 2 provided no. of scores same as denominator		
		ANSWER ONLY: FULL MARKS		
1.3.3	Dina's range = $(86 - 48) \% \checkmark M/A$ = 38 % $\checkmark CA$	1M/A Subtracting largest and lowest values 1CA Range(2)	12.4.3	
		ANSWER ONLY: FULL MARKS		

<u> </u>			NSC -	Final Marking Guide		L C
	Solution	D !			Explanation	AS
.3.4		Dina	Mpho			12.4.4
	Median	60%	60%			
	Mean	62,5%	58,78%			
	Range	38%	50%			
	mark is greater Also Dina's rat	· (62,5%) tha nge is smalle	n Mpho's (58 er than Mpho		2J for each reason 2J for each reason (4) MAY BE MARKED AS CA, BASED ON PREVIOUS ANSWERS A well worded JUSTIFICATION and no mathematical reasoning MAX 2 mark	
.4	Total number of $= 270 \times 2 = 54$		two pages		1A Number of words on two pages	12.1.1
	$3 \text{ minutes} = 3 \\ = 18$	× 60 seconds 30 seconds ✓			1A Number of seconds in three minutes	
	Dina's rate = $\frac{1}{1}$	540 words 80 seconds	✓M		1M Dividing	
	= 3	words per s	econd √ CA		1CA Dina's rate	
	Mpho's reading	g rate = 2 we	ords per secon	nd		
	∴ Dina reads f	faster than M	lpho. ✔CA		1CA Conclusion	
	OR Mpho's rate is	0,5 seconds	per word √ A		1M Converting from seconds to minutes	
	Dina's rate $=$	$3 \times 60 \text{ sec of}$ $2 \times 270 \text{ work}$	nds rds ≁M ≁A		1A Words per minute	
	_ 1	180 seconds			1CA Multiplying	
		540 words			1CA Solution	
	= 0 \therefore Dina reads f		s per word≁C lpho. ≁CA	A	1CA Conclusion	
	OR					
	In 3 minutes M	=	$d = 180 \times 2$ = 360 words		1C Converting minutes to sec 1M multiplication 1CA number of words	
	Dina reads 540		minutes		1CA number of words	
	∴ Dina reads f	faster than M	lpho. ✔CA		1CA Conclusion	
	OR					

Ques	Solution	Explanation	AS
<u> </u>	OR	•	
	Total number of words on two pages		
	$= 270 \times 2 = 540 \checkmark \mathbf{A}$	1A Calculating number of	
	Mpho's time = 540 words	words on 2 pages	
	Mpho's time = $\frac{540 \text{ words}}{2 \text{ words per second}}$		
	= $270 \text{ seconds} \checkmark CA$	1CA Calculating time	
	_ 270 seconds	1MC and in the test	
	$= \frac{1}{60 \text{ seconds per minute}} \checkmark M$	1M Converting time to	
	······································	minutes	
	.1 .		
	$=4\frac{1}{2}$ minutes \checkmark CA	1CA Mpho's time	
	\therefore Dina reads faster than Mpho. \checkmark CA		
		1CA Conclusion	
	OR		
		1A Calculating number of	
	Dina's rate = $\frac{2 \times 270 \text{ words}}{3 \text{ minutes}} \checkmark \mathbf{A} \checkmark \mathbf{M}$	words on 2 pages	
	3 minutes	1M dividing	
	= 180 words per minute \checkmark CA	1CA Calculating rate	
	r r		
	Mpho's rate = 2×60	1CA Calculating rate	
	= 120 words per minutes \checkmark CA	1CA Conclusion	
	∴ Dina reads faster than Mpho. ✓CA		
	OR		
	Total number of words on two pages		
	$=270 \times 2 = 540 \checkmark A$	1A Calculating number of	
	Mpho's time = $\frac{540 \text{ words}}{2 \text{ words per second}} \checkmark \mathbf{M}$	words on 2 pages	
	2 words per second	1M dividing	
		1CA Calculating time	
	= 270 seconds \checkmark CA		
	Dina's time = $3 \text{ minutes} = 180 \text{ seconds} \checkmark C$	1C Converting time to	
	Dina s time -3 minutes $= 180$ seconds \checkmark C	minutes	
	Dina reads faster than Mpho. CA		
	Dina reado fusier man rapito. • CA	1CA Conclusion (5)	
		Penalty of 1 if used 270 only Dina reads faster with no work –	
		max 1	
		Final mark to be consistent with calculations	

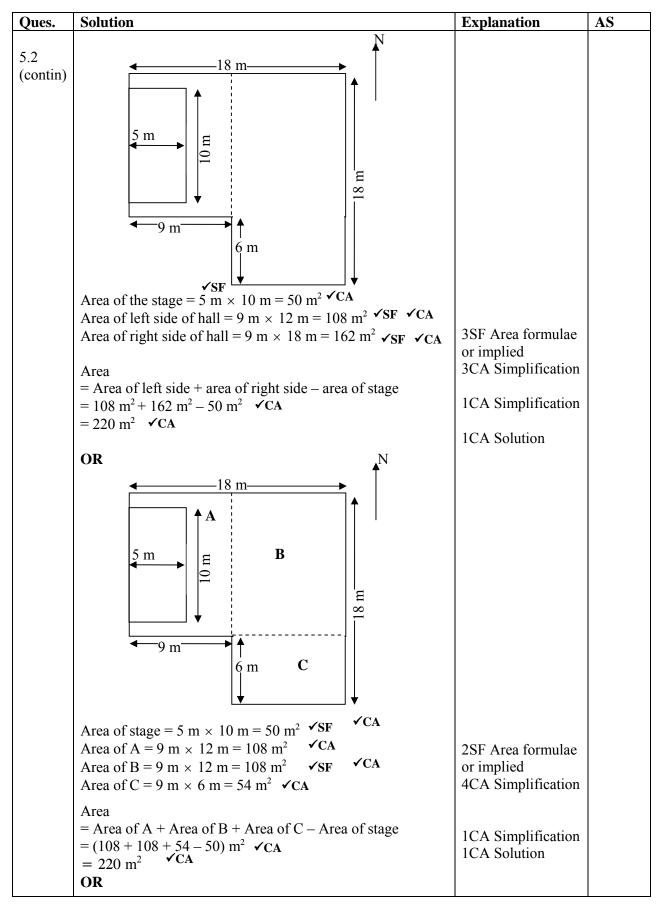

QUEST	PENALTY for ROUNDING OFF in QUESTION 2.4.2		
Ques.	Solution	Explanation	AS
2.1	Volume of the basin = $\pi r^2 h$ = 3,14 × (30 cm) ² × 40 cm ✓ SF = 113 040 cm ³ ✓ CA	1SF Substitution 1CA Correct volume (2) $\frac{\pi (113 \ 097,34)}{\frac{22}{7}(113 \ 142,86)}$ ANSWER ONLY: FULL MARKS	12.3.1
2.2	Half of the volume of the basin = $\frac{113040 \text{ cm}^3}{2} \checkmark M$ = 56 520 cm ³ $\checkmark CA$ = 56,52 litres $\checkmark CA$	1M Dividing by 2 1CA Volume 1CA Conversion	12.3.1 12.3.2
	Each time she washes and rinses the dishes she uses: $56,52 \ \ell \ \times \ 2 \ half-filled \ basins = 113,04 \ litres \ \checkmark CA$ Thus water used to wash three times a day: $\checkmark CA$ $113,04 \ litres \ \times \ 3 \ washings \ per \ day = 339,12 \ litres$	1CA Calculating litres for a single wash 1CA Number of litres for 3 washes	
	OR		
	Two half-filled basins = 1 full basin $\checkmark M \checkmark CA$ \therefore Volume = 113,04 litres $\checkmark CA$	1M Concept of two halves or implied 2CA Volume	
	Thus, Volume/day = $3 \times 113,04$ litres \checkmark CA = 339,12 litres \checkmark CA	1CA Multiplying 1CA Volume/day (5)	
		ANSWER ONLY: FULL MARKS	
2.3.1	According to the advertisement, the dishwasher would use $=\frac{339,12}{9} \ell$ $\checkmark M$ $= 37,68 \ell$ $\checkmark CA$	1M Division 1CA Simplification	12.3.1
	OR Half of the volume = 56,52 ℓ $\frac{1}{9}$ th of half of the volume = $\frac{56,52\ell}{9}$ = 6,28 $\ell \checkmark M$ 2 halves of the basins = 2 × 6,28 ℓ = 12,56 ℓ	1M Division	
	3 times a day = $3 \times 12,56 \ \ell$ = $37,68 \ \ell$ CA	1CA Simplification(2)If divide by 10, max 1If 9 times is read as 9%308,6 l max 1 markANSWER ONLY FULL MARKS	

Ques.	Solution	Explanation	AS
2.3.2	\checkmarkCA Thandi would save 301,44 ℓ per day, which seems to be an exaggeration and thus is not realistic. Thandi would be saving water. \checkmarkJ \checkmarkJ	1CA Own opinion 2J Reason(s) (3) YES OR NO – MAX 1 BASED ON CALCULATIONS	12.3.1
2.4.1 a	Balance still owing = R 2 699,00 - 10% of R 2 699,00 = R 2 699,00 - 0,01 × R 2 699,00 = R 2 699,00 - R 269,90 \checkmark CA = R 2 429,10 \checkmark CA OR \checkmark M Balance still owing = 90% of R 2 699,00	1M Finding balance owing 1CA Computation 1CA Amount owing 1M 90%	12.1.3
	$= 0.90 \times R \ 2 \ 699,00 \checkmark CA$ $= R2 \ 429,10 \checkmark CA$ OR	1 CA Computation 1 CA Balance owing	
	Balance still owing = $24 \times R \ 177,53 \checkmark M \checkmark A$ = R 4 260,72 $\checkmark CA$	1M Multiplication1 A Instalment1 CA Balance owing (3)ANSWER ONLY: FULL MARKS	
2.4.1 b	Total cost = R 269,90 + (24 × R 177,53) \checkmark M \checkmark CA = R 269,90 + R 4 260,72 \checkmark CA	1M Finding total amount 1CA Using correct values from advertisement 1CA Total paid over 24	12.1.3
	= R 4 530,62 ✓ CA	months in instalments1CA Total(4)ANSWER ONLY: FULL MARKS	

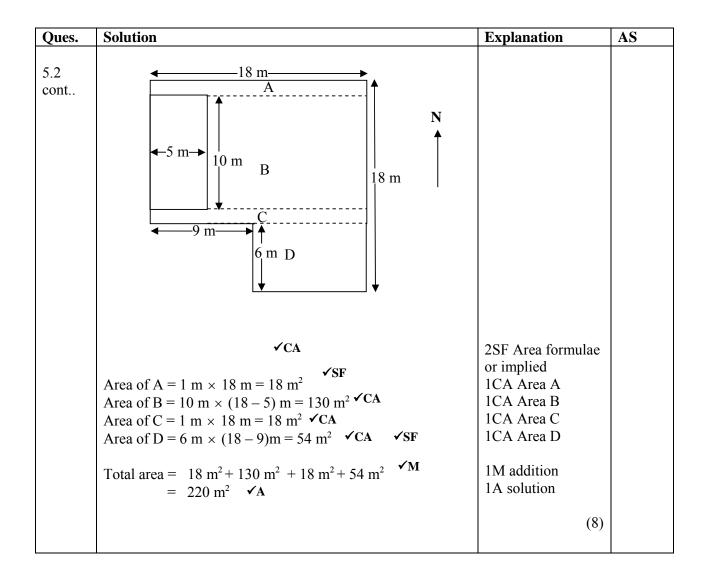
Ques.	Solution	Explanation	AS
2.4.2	$i = \frac{18}{100} \div 12 \checkmark \mathbf{M} \qquad i = 18\% \div 12 \checkmark \mathbf{M} = \frac{18}{1200} \qquad \mathbf{OR} \qquad = \frac{0,18}{12} = 0,015 \text{ per month} \checkmark \mathbf{CA} \qquad \mathbf{OR} \qquad = 0,015 \text{ per month} \checkmark \mathbf{CA}$	1M Dividing by 12 1CA Value of <i>i</i>	12.1.3
	$n = 2 \times 12 = 24 \text{ months}$ $A = P(1 + i)^{n} \checkmark A \checkmark SF$ $= R 2 699,00(1 + 0,015)^{24}$ $\approx R 3 858,23 \checkmark CA$ OR Amount paid back = A $= P(1 + i)^{n} \checkmark M \checkmark CA$ $= R2 699,00 \left(1 + \frac{18}{12 \times 100}\right)^{24} \checkmark SF$ $= R 2 699,00(1 + 0,015)^{24} \checkmark CA$ $\approx R 3 858,23 \checkmark CA$	1A Value of P1A Value of n1SF Substitution intoformula1CA Solution1SF Substitution intoformula1CA Value of n1M Dividing by 121CA Simplification1A Value of P1CA Solution(6)If i not converted with 2 years- max 5If i not converted but use 24	
		months – max 4 If <i>i</i> converted with 2 years – max 4 ANSWER ONLY FULL MARKS	
2.4.3	Total cost using the instalment option = R 4 530,62 \checkmark CA Amount paid back using the loan option = R 3 858,23 \checkmark CA With the loan option, Thandi pays R 672,39 less than what she would pay had she taken the instalment option Thandi should choose the loan option. \checkmark J OR Cash \checkmark A because there is no interest to be paid \checkmark J \checkmark J	1CA Comparing the options 1CA Difference between the options 1J Thandi's choice 1A Cash 2J Learner's justification (3) Consider cultural inclinations regarding buying on credit Max 1 mark if no justification	12.1.2

QUESTION 3 [29]			
Ques.	Solution	Explanation	AS
3.1.1	Fixed monthly cost = $\frac{\checkmark \mathbf{M}}{\frac{\mathbf{R} 8400}{12}} + 4 \times \mathbf{R} 75 \checkmark \mathbf{A}$ = $\mathbf{R}700 + \mathbf{R}300$ = $\mathbf{R} \ 1 \ 000$	1M for dividing annual fee and multiplying weekly fee 1A Multiplying by 4 (2)	12.1.3
3.1.2	Annual transport costs = $R75 \times 52 \checkmark M$ = $R3 900,00\checkmark A$ Total annual costs = $R8 400,00 + R3 900,00$ = $R12 300\checkmark CA$ Average monthly costs = $\frac{R12 300}{12}$ = $R1 025,00\checkmark CA$ The fixed costs for February is R25,00 less than the average monthly fixed. $\checkmark J$	1M multiplying by 52 1A Calculating the annual transport cost 1CA Calculating total annual fixed costs 1CA Average cost 1J Own opinion If multiply by 48, max 4 marks	
	OR Annual transport costs = R75 × 52 \checkmark M = R3 900,00 \checkmark A Average annual transport cost = $\frac{R3 900}{12} \checkmark$ CA = R325 \checkmark CA February's monthly transport cost = R300 The monthly travel costs for February is R25,00 less than the average monthly travel costs. \checkmark J	1M multiplying by 52 1A Calculating the annual transport cost 2CA Average cost 1J Own opinion (5)	

Ques.	Solution	Explanation	AS
	15% reduction means the cost = 85% of R100 \checkmark M	1M Concept of reduction	
3.2		1CA Solution	12.1.1
	New production $cost = 0.85 \times R100 = R85.00 \checkmark CA$		
	OR		
	15% reduction = $\frac{15}{100} \times \text{R100} = \text{R15} \checkmark \text{M}$	1M Concept of reduction1CA Solution(2)	
	New production $cost = R100 - R15 = R85 \checkmark CA$	ANSWER ONLY FULL MARKS	
3.3	80 is more than 50, so the cost is R85 per duvet set.		12.2.1
	Total cost = fixed cost + (no. of duvet sets \times cost per set)		
	So C = R1 000 + $70 \times R85 \checkmark M$	1M Cost per set	
	$= R1 \ 000 + R5 \ 950 \\= R \ 6 \ 950 \checkmark CA$	1 CA Total Cost	
	$R = 1000 + D \times R = 85 = R = 7800 \checkmark M$	1M Substitution	
	$D \times R 85 = R 6 800$		
	$D = \frac{R 6 800}{R 85} \checkmark S$	1S Simplification	
	$D = 80 \checkmark CA$	1 CA Number of duvets	
	OR		
	Production costs for D = R7 800 - R1 000 \checkmark A = R6 800	1A Calculating production cost	
	$\therefore D = \frac{R6800}{\sqrt{M}} \checkmark M$	1M Dividing	
	$R85 = 80 \checkmark CA$	1CA Value for D	
	OR		
	$\mathbf{\mathcal{M}} \mathbf{R} \ 1 \ 000 + \ 80 \times \mathbf{R} \ 85 = \mathbf{R7} \ 800 \ \mathbf{\mathcal{A}} \mathbf{A}$ $\mathbf{D} = 80 \mathbf{\mathcal{C}} \mathbf{A}$	1M Substitution 1A Calculating production cost 1CA Value for D (5)	
		CHECK IF R100 IS USED FOR COST PER DUVET SET	
		ANSWER ONLY: FULL MARKS	


Copyright reserved

	Not - Final Marking Guudenne				
3.5.1	20 duvet sets ✓RG✓RG	2RG Reading from graph (2)	12.2.3		
3.5.2	Profit = Income – Expenses $\checkmark RG \qquad \checkmark RG$ = R12 000 – R7 800 = R4 200 $\checkmark CA$	1RG Reading Income from graph 1RG Cost1CA Solution(3)	12.2.3		
		ANSWER ONLY: FULL MARKS			
3.5.3	Profit = Income from 70 sets – Expenses from 80 sets $\checkmark \mathbf{RG}$ $\checkmark \mathbf{CA}$ = R10 500 – R7 800	1RG Reading Income from graph 1CA Expenses	12.2.3		
	= R2 700 ✓CA	1CA Solution (3) If expense – income but answer positive, full marks ANSWER ONLY: FULL MARKS			


QUESTION 4 [22]			
Ques	Solution	Explanation	AS
4.1.1	Difference between average annual income in Gauteng and Eastern Cape $\checkmark RG \qquad \checkmark RG$ = 80 000 - 28 000 $\checkmark M$ = R 52 000 $\checkmark CA$	2RG Reading values from the graph 1M Subtraction 1CA Difference	12.4.4
	OR		
	\checkmark RG \checkmark RG(R80 - R 28) thousands \checkmark M	2RG Reading values from the graph 1M Subtraction	
	= R52 thousand \checkmark CA	1CA Difference (4) ANSWER ONLY FULL MARKS	
4.1.2	\checkmark J The higher the average income, the lower the unemployment rate. \checkmark J	2J Opinion	12.4.4
	OR ✓J		
	The lower the average income, the higher the unemployment rate. $\checkmark J$		
	OR ✓I		
	There is a negative correlation between the average annual income and the unemployment rate. $\checkmark J$ OR		
	No relationship when provinces are taken into account. ✓J✓J	(2)	
4.1.3	Gauteng has a higher average annual income and lower unemployment rate than the Eastern Cape. The chances then, are that, the person will earn a better salary in Gauteng and the prospects of being employed in Gauteng are better than in the Eastern Cape. $\checkmark J \checkmark J$	2J Opinion	12.4.4
	OR		
	There are more job opportunities $\checkmark J \checkmark J$ OR		
	Any other valid reason √ J √ J	(2)	

Ques	Solution	Explanation	AS
Ques 4.2.1	LEBO'S MONTHLY BUDGETRRNett monthly salary10 625Money sent home: 35% of R10 625,00A \checkmark M \checkmark AAmount for living expensesB \checkmark MBLIVING EXPENSESImage: Calibratic color of the second color of t	1M Finding	AS 12.1.3 12.2.3
4.2.2	His proposed additional expenses = R1 259,00 + R500,00 = R 1 759,00 \checkmark CA The surplus amount of R 1 580,75 is less than the proposed additional expenses. He does not have enough money. $\checkmark J \checkmark J$ OR $\checkmark M \checkmark CA$ R 1 580,75 - R1 259,00 - R500,00 = - R178,25 He does not have enough money. $\checkmark J \checkmark J$	1CA Additional expenses	12.1.2

QUEST	TION 5 [21] PENALTY OF ONE IF UNIT IS OF	MMITTED in QUESTION 5	5.2
Ques.	Solution	Explanation	AS
5.1	18m is represented by 60 mm 1mm on the scale map = $\frac{18 \times 1000 \text{ mm}}{60} \checkmark M$ = 300 mm	1M Converting	12.3.3
	The scale is 1: 300✓A	1A Solution	
	OR		
	The scale is = $60 \text{ mm} : 18 \text{m} \checkmark \text{M}$ = $1:300 \checkmark \text{A}$	1M Writing down the ratio1A Solution(2)ANSWER ONLY FULL MARKS	
5.2	Length of wall behind the stage = $18 \text{ m} - 6 \text{ m} = 12 \text{ m}$ $\checkmark M$ Missing length of south wall = $18 \text{ m} - 9 \text{ m} = 9 \text{ m}$	1M Calculating missing lengths	12.3.1
	$ \begin{array}{ccc} \checkmark SF & \checkmark SF & \checkmark SF \\ Area = (18m \times 12m) + (6m \times 9m) - (5m \times 10m) \\ \checkmark CA & \checkmark CA & \checkmark CA \end{array} $	3SF Area formulae or implied	
	$= 216m^{2} + 54m^{2} - 50m^{2}$ = 220 m ² \checkmark CA	3CA Simplification 1CA Solution	
	OR 18 m 5 m 5 m 5 m 6 m 6 m Area = Area of large square – area of bottom left rectangle – area of stage \sqrt{M} \sqrt{SF} \sqrt{SF} \sqrt{SF} \sqrt{SF}	1M Adding and subtracting areas	
	$= (18 \text{ m} \times 18 \text{ m}) - (9 \text{ m} \times 6 \text{ m}) - (5 \text{ m} \times 10 \text{ m})$ $\checkmark CA \qquad \checkmark CA \qquad \checkmark CA$ $= 324 \text{ m}^2 - 54 \text{ m}^2 - 50 \text{ m}^2$ $= 220 \text{ m}^2 \checkmark CA$	3SF Area formulae or implied 3CA Simplification 1CA Solution	
	OR (see next page)		

Copyright reserved

Ques.	Solution		Explanation	AS
5.3	Area of 1 tile = $\ell \times b$ = 50 cm \times 50 cm = 2 500 cm ² \checkmark 8	OR \checkmark C = 0,5 m × 0,5 m = 0,25 m ² \checkmark S	1S Substitution 1C Conversion	12.3.1
	= 0,25 m ² \checkmark C The number of tiles needed = $\frac{\text{area to be tiled}}{\text{area of a tile}} \checkmark$ M = $\frac{220 \text{ m}^2}{1000000000000000000000000000000000000$		1 M Division 1CA Substitution	12.3.1
	$0,25 \text{ m}^2$ = 880 tiles \Lap{CA} 5\% more means they need 10 \Lap{M})5% [1CA Simplification 1M Concept of increase	
	Number of tiles needed = $880 \times 105\%$ = 924 tiles \checkmark CA		1CA Solution	
	OR			
	Area of 1 tile = $\ell \times b$ = 50 cm \times 50 cm \checkmark S = 2 500 cm ²	OR = 0,5 m × 0,5 m \checkmark C = 0,25 m ² \checkmark S	1S Substitution 1C Conversion	12.3.1
	$= 0,25 \text{ m}^2 \checkmark C$			
	5% more means they need 10 Area to be tiled = $220 \text{ m}^2 \times$	105% ✓A	1M increase in % 1A 105%	
	$= 231 \text{ m}^2 \checkmark$ Number of tiles needed $= \frac{2}{0}$		1CA area 1M division	
	= 92	4 tiles ✓CA	1CA solution	

Ques.	Solution	Explanation	AS
	OR From alternative 5 of Question 5.2	-	
	1 Tile = $0.5 \text{ m} \times 0.5 \text{ m}$ $\checkmark C$	1 C conversion	
	Area of A = 1 m × 18 m = $\frac{1}{0.5} \times \frac{18}{0.5} = 36 \times 2 = 72 \checkmark M$	4M Calculation of number of tiles	
	Area of B = 10 m × 13 m = $\frac{10}{0.5} \times \frac{13}{0.5}$ = 20 × 26 = 520 × M		
	Area of C = 1 m × 18 m = $\frac{1}{0.5} \times \frac{18}{0.5} = 36 \times 2 = 72 \checkmark M$		
	Area of D = 6 m × 9 m = $\frac{6}{0.5} \times \frac{9}{0.5} = 19 \times 12 = 216 \checkmark M$		
	Total number of tiles needed = $72 + 520 + 72 + 216$		
	= 880 5% of 880 tiles = 44 tiles \checkmark CA	1CA Computation	
	So the number of tiles needed = $880 + 44 = 924\checkmark$ CA	1CA Solution	
		(/) ANSWER ONLY FULL MARKS	
5.4	Number of black tiles needed = $\frac{4}{5} \times 924 = 739,24$ CA	1A Ratio of black boxes	12.1.1 12.1.2
	Number of boxes of black tiles needed	1CA Concept	12.3.1
	$=\frac{740}{12} \checkmark \mathbf{M}$	1M Dividing	
	= 61,67 $\approx 62 \checkmark CA$	1CA Number of black boxes	
	OR		
	The total number of boxes = $\frac{924}{12} \checkmark CA$	1CA Method	
	$= 77 \text{ boxes}\checkmark CA$ $\checkmark A$	1CA Total number of boxes 1A Ratio of black	
	The number of black boxes = $\frac{4}{5} \times 77$	boxes	
	= 61, 6 $\approx 62 \checkmark CA$	1CA Number of black boxes	
		(4) ANSWER ONLY FULL MARKS	

QUEST	TION 6 [27]		
Ques.	Solution	Explanation	AS
6.1.1	5% more means that he gets 105% 2006 salary = R 178 500 × 105% ✓M = R 187 425 ✓CA	1M Concept of % increase 1CA Solution	12.1.3
	OR 2006 salary = R 178 500 + 5% of R 178 500 \checkmark M = R 178 500 + R 8 925 D 187 425 (a)	1M Concept of increase	
	$= R \ 187 \ 425 \ \checkmark CA$ OR $2006 \ \text{salary} = \frac{\text{salaryin } 2007}{1,05} = \frac{R \ 196 \ 796, 65}{1,05} \checkmark M$	1CA Solution 1M Concept of decrease	
	$= R 187 425 \checkmark CA \checkmark CA$	1CA Solution (2) ANSWER ONLY FULL MARKS	
6.1.2	2008 salary = R 196 796,25 × 105% OR $\frac{\text{R216 967,87}}{1,05}$ \checkmark M	1M Concept of % increase/decrease	12.1.1 12.1.2 12.1.3
	 = R 206 636,06 ✓CA Total salary over five years = 2005 salary + 2006 salary + 2007 salary 	1CA Solution	12.2.1
	+ 2008 salary + 2009 salary ✓M = R178 500 + R187 425 + R 196 796,25 + R206 636,06 + R216 967,87	1M Addition	
	$= R 986 325,18 \checkmark CA$	1CA Solution (4) ANSWER ONLY FULL MARKS	
6.2.1	Bonus for goals scored = $(5 \times R \ 450) \checkmark M$ = R 2 250 $\checkmark A$	1M Multiplication 1A Solution (2)	12.1.1 12.2.1
6.2.2	Number of games won = $70\% \times 30 = 21 \checkmark M$	ANSWER ONLY FULL MARKS 1M Calculating games won	12.1.1
	Bonus earned = $21 \times R800 = R 16\ 800 \checkmark CA$ OR	1CA Bonus	12.2.1
	Bonus for games won = R 800 \times 70% of 30 \checkmark M = R 16 800 \checkmark CA OR	1M Calculating bonus 1CA Bonus	
		(2)	

Ques	Solution	Explanation	AS
	OR Bonus for games won = $30 \times 70\%$ of R 800 \checkmark M = R 16 800 \checkmark CA	1M Calculating bonus 1CA Bonus	
	OR 70% of R 800 = R560,00 \checkmark M Bonus for games won = R560,00 × 30 = R16 800 \checkmark CA	1M Calculating 70% 1CA Bonus (2) ANSWER ONLY FULL MARKS	
6.2.3	✓M Total Gross income = R 196 796,25 + R 2 250 + R 16 800 = R 215 846,25 ✓CA	1M Adding all earnings 1CA Computation (2) ANSWER ONLY FULL MARKS	12.1.3
6.3	$ \begin{array}{l} \pounds 1 = R16,45 \\ \pounds 36\ 960 = R16,45 \times 36\ 960 \checkmark \mathbf{M} \\ = R607\ 992,00 \checkmark \mathbf{A} \end{array} $	1M converting 1A Salary in rands	12.1.3 12.3.2
	Average annual salary = R607 992,00 ÷2 = R303 996,00 ✓CA	1CA Average salary	
	Difference in salary = R303 996,00 − R216 967,87 = R87 028,13 √CA	1CA Difference	
	OR		
	R216 967,87 = \pounds 13 189,54 \checkmark A	1A Salary in pounds	
	Difference = $\pounds \left(\frac{36960}{2} - 13189,54 \right) \checkmark \mathbf{M}$	1M Difference in £	
	= £5 290,46 √CA	1CA Salary in £	
	≈ R87 028,07 √CA	1CA Conversion (4)	
		ANSWER ONLY FULL MARKS	

Ques	Solution	Explanation	AS
	(See page 22 for an alternate solution)		
6.4.1	MATCH MATCH OUTCOMES FOR THE TWO MATCHES $W \rightarrow WW$ $L \rightarrow WL$ $W \rightarrow WW$ $L \rightarrow WL$ $W \rightarrow WW$ $L \rightarrow WL$ $W \rightarrow WW$ $L \rightarrow WL$ $L \rightarrow UL$ $L \rightarrow D \rightarrow DD$	2A Outcomes of match2CA Outcomes for both matches	12.4.5
6.4.2 a	Win both matches: number of events = $4^{\prime}M$ $\checkmark CA$ So, P(win both matches) = $\frac{1}{9}$ or 0,11 or 0,1 or 11,11%	(4) 1M Possible event 1 CA Solution (2) No working out 1 mark for numerator 1 mark for denominator	12.4.5
6.4.2 b	Win only one of the matches: Number of events = $4 \checkmark_{\mathbf{M}}$ P(win only one of the matches) = $\frac{4}{9}$ or 0,44 or 0,4 or 44,44% \checkmark CA	1 M counting the possible outcomes 1CA Solution (2)	12.4.5
6.4.2 c	Draw at least one of the matches: Number of events = 5 $\checkmark_{M} \checkmark_{CA}$ P(draw at least one of the matches) = $\frac{5}{9}$ or 0,56 or 0,5 or 55,56% \checkmark_{CA} OR Not drawing: Number of events = 4 \checkmark_{M} P(not drawing) = $\frac{4}{9}$ P(draw at least one of the matches) = $1 - \frac{4}{9} \checkmark_{CA}$ = $\frac{5}{9}$ or 0,56 or 0,5 or 55,56% \checkmark_{CA}	1M Concept of at least 1CA number of events1CA Solution1M Concept of not1CA Subtraction1CA Solution	12.4.5

22 NSC –Final Marking Guideline

Ques	Solution	Explanation	AS
	The answer below is an alternative for QUESTION 6.4 only		
	$\frac{1}{3} \qquad W \qquad WW$ $\frac{1}{3} \qquad L \qquad WL$		12.4.5
	$\frac{1}{3}$ $D \longrightarrow WD$		
	$\frac{1}{3}$ W \longrightarrow LW		
	$ \underbrace{\begin{array}{c} & \frac{1}{3} \\ & & \\ & $		
	$D \longrightarrow LD$		
	$\frac{\frac{1}{3}}{\frac{1}{3}} \Psi \longrightarrow DW$		
	$D \bigoplus_{l} \frac{\frac{1}{3}}{1} L \longrightarrow DL$		
	$\overline{}^{3}$ D \longrightarrow DD		
6.4.2a	$P(win) = \frac{1}{3}; P(lose) = \frac{1}{3}; P(draw) = \frac{1}{3} \checkmark M$	1M probability	12.4.5
(4 01	P(win both matches) = $\frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \checkmark CA$	1 CA Solution (2)	10.1.5
6.4.2b	$P(\text{win only one of the matches}) = P(WL) + P(WD) + P(LW) + P(DW)$ $= (1 \times 1) + (1 \times $	1 M probability	12.4.5
	$= \left(\frac{1}{3} \times \frac{1}{3}\right) + \left(\frac{1}{3} \times \frac{1}{3}\right) + \left(\frac{1}{3} \times \frac{1}{3}\right) + \left(\frac{1}{3} \times \frac{1}{3}\right) + \left(\frac{1}{3} \times \frac{1}{3}\right) \checkmark \mathbf{M}$ $= \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = \frac{4}{9} \checkmark \mathbf{CA}$	1CA Solution	
	9 9 9 9 9 9 °CA	(2)	
6.4.2c	P(draw at least one of the matches) = P(WD) + P(LD) + P(DW) + P(DL) + P(DD) M = $(\frac{1}{3} \times \frac{1}{3}) + (\frac{1}{3} \times \frac{1}{3}) + (\frac{1}$	1M Concept of at least 1CA Simplification 1CA Solution (3)	12.4.5

TOTAL: 150