

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

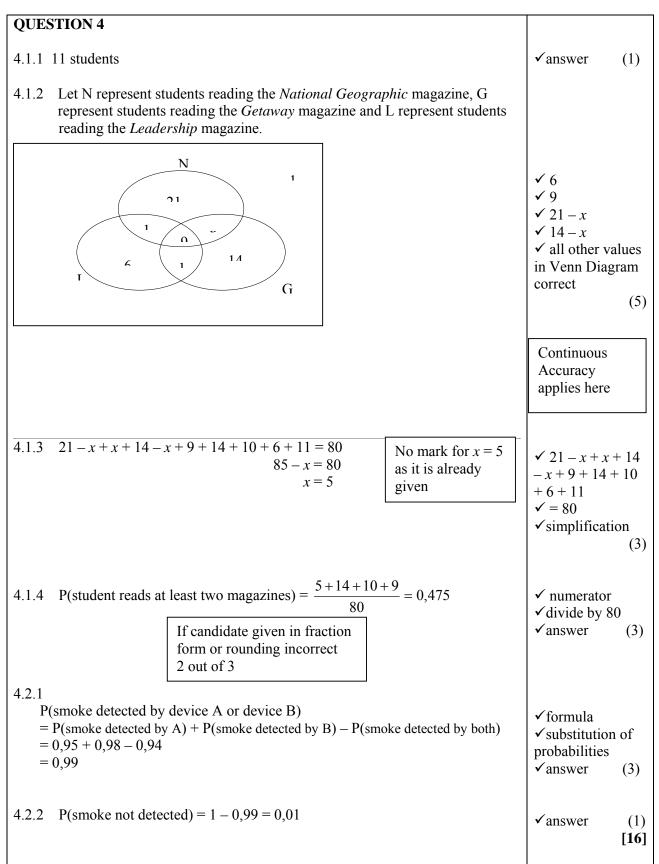
NATIONAL <u>SENIOR CERTIFICATE</u>

GRADE 12

-----**MATHEMATICS P3** н H. **NOVEMBER 2008** 1 10 **MEMORANDUM** 1 1 ۲ -----

MARKS: 100

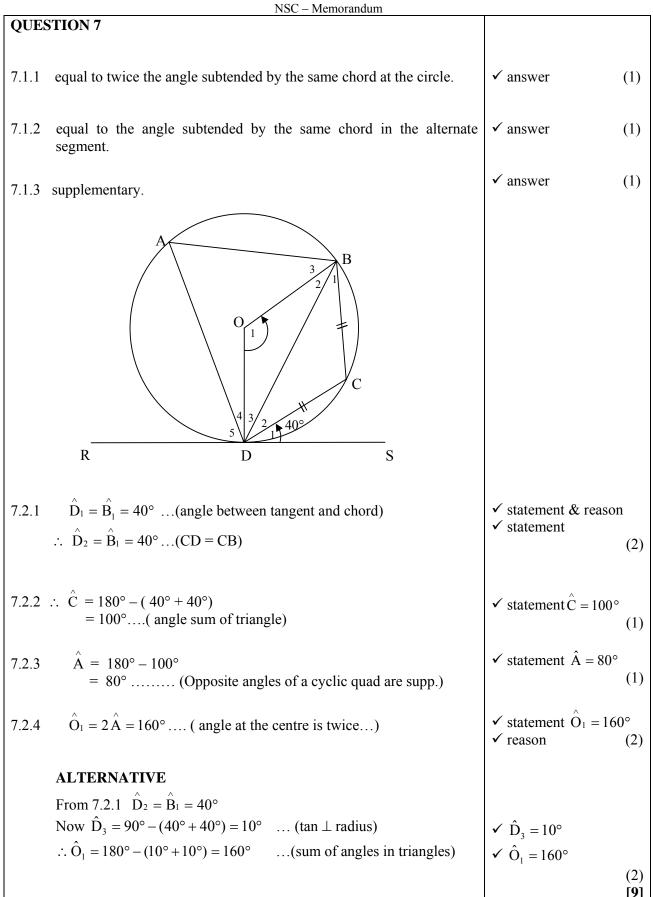
This memorandum consists of 14 pages.


Copyright reserved

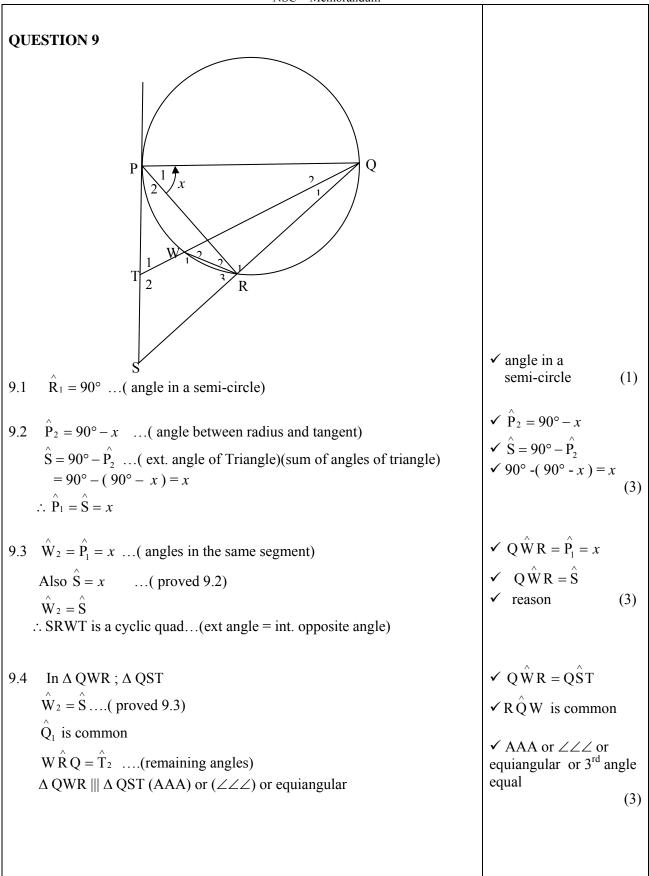
Please turn over

<u>NOTE:</u> Continued Accuracy applies as a rule throughout the memorandum

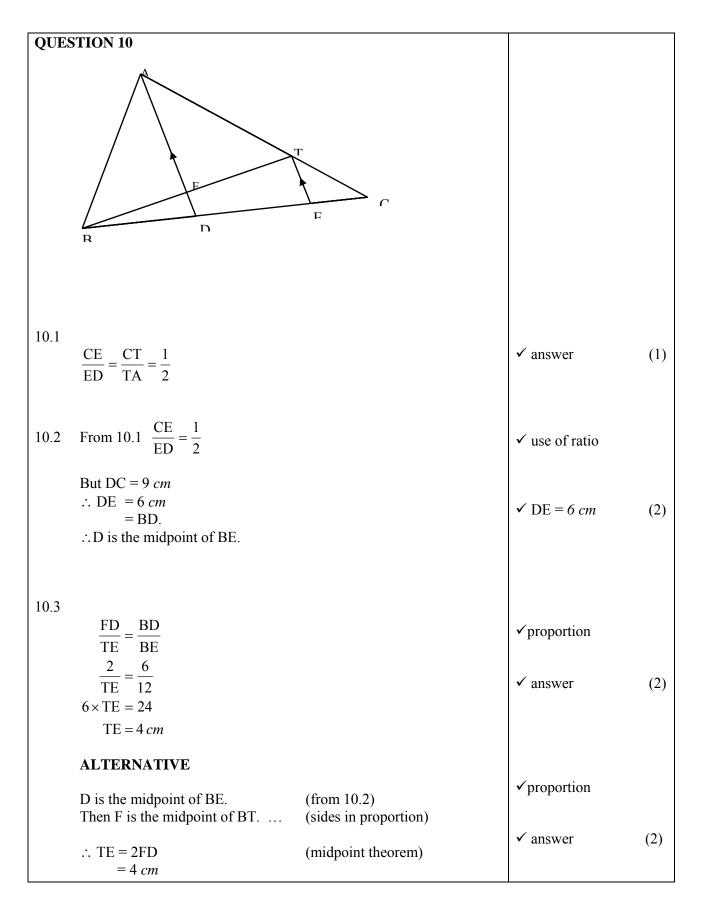
QUI	ESTION 1		
1.1	$T_1 = 2; T_n = T_{n-1} + 4$ $T_{n+1} = T_n + 4$	Answer Only	✓ Identify $T_1 = 2$ ✓ +4 ✓ recursion used
Not	recursive formula: max 2/3	Full Marks	(3)
1.2	$T_n = 2 + (n-1)4 = 4n - 2$		formula in terms of n (2) [5]
QUI	ESTION 2		
2.1	Approximately 2 %	Answer Only Full Marks	✓✓answer (2)
2.2	Approximately 16 %		✓ √answer (2)
2.3	No, since there are some employees (less tha R3 000,00. These employees will not live an economically. Yes, there is a fair distribution of salaries sin employees i.e. 68% earn a salary between R month. Some employees will have more resolves and thus must be compensated 2% earn below R3 000,00.	 ✓ Yes / No depending on the argument ✓ ✓ any reasonable explanation with justification based on the given data (3) 	
	Union side Not a proper living Company side Have to differentiate Check the avenue of argument provided th their everyday knowledge to justify their s One supporting statement is sufficient to ju with reference to the average salary and It is possible to get 3 marks from the argun has not written YES / NO If candidate just writes YES / N 1 out of 3	at the candidate uses statements. Istify the argument standard deviation nent if the candidate	[7]


	STION 3		
3.1	65% of 7 800 = 5 070	Answer Only Full Marks	✓65% ✓5070
3.2	No. This is just the opinion of a small sample of the The view of the vast majority has not been hear	(2) ✓ No ✓ explanation -	
	whether the sample is representative of the pop The results of the survey are not valid for the for Only those who were watching this particular p respond. People who were not watching this pro aware that such a survey had taken place. Respondents needed a cellphone to make respon not have a cellphone were unable to respond. A cellphones but no airtime could not respond.	representative ✓ explanation – not watching programme ; no cellphone (3)	

Mathematics/P3	5 NSC – Memorandum	DoE/November 2008
QUESTION 5		
5.1.1 The num	ber of different meal combinations = $3 \times 4 \times 2 = 24$.	✓ multiplication rule ✓ answer (2)
	ber of different meal combinations that have chicken as $arse = 3 \times 2 \times 2 = 12$	✓ multiplication rule using 2 in the main course ✓ answer (2)
5.2.1 Any learne	er seated in any position in: $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$ = 720 different ways.	 ✓ 6! / multiplication rule ✓ answer (2) If just write 6!, full marks
Now con remainin different with thes	particular learners could be seated in 2 different ways. sider them to be a single group. This group and the four g learners will yield 5 objects which results in $5! = 120$ seating arrangements. Therefore the group of learners e two particular learners seated together could be seated 0 = 240 different ways.	 ✓ multiplication rule – 2 learners ✓ multiplication rule – 5 objects ✓ answer (3) If just write 2 ×5!, full marks NOTE: Answer only in 5.1.1, 5.1.2 and 5.2.1 is full marks


	atics/F				6 NSC – N	/ /lemorandum	1	DoE/Novembe	r 200
QUES	ΓΙΟΙ	N 6							
.1 & 6	5.3								
								✓ ✓ ✓ plotting points 1 – 3 wrong 2 / 3 4 – 6 wrong 1 / 3 7 – 9 wrong 0 / 3	(.
								✓✓ line of least squares (6.3)	(2
5.2 NOTE:	∴ ec	quatio Ac	on of lin	to the Nat	29,22 (29.21 0,89 (0,886 squares is $y = 2$ ional Curriculum	9,22 + 0,89 Statement th		 ✓✓ first value (a or b) ✓ second value (a or b) ✓ equation No penalty for incorrect decimal places	(4
		cal	culator.	The altern	blems should be do native to the calcul indicated below		use of a		
		cal	culator.	The altern			use of a		
	RNA x	cal and	culator. d paper \overline{E} (x-	The altern method as	native to the calcul	lator is to us	use of a	✓ using the table ✓ calculating the value o	f <i>b</i>
ALTE		cal and	$\frac{1}{2}$	The alternmethod as $(y - \overline{y})$	native to the calculated below. $(x - \overline{x})(y - \overline{y})$	lator is to us $(x - \overline{x})^2$	e use of a se the pen	✓ using the table ✓ calculating the value o	
	x	cal and TIVI y	culator. d paper \overline{E} (x-	The altern method as	native to the calcul indicated below.	lator is to us	e use of a se the pen $(y - \overline{y})^2$	✓ using the table	rect
	<i>x</i> 16	cal and TIVI y 45	culator. d paper \overline{z} $(x-\overline{x})$ -14,1 5,9 -	The alternmethod as $(y - \overline{y})$ -10,9	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ 153,69	lator is to us $(x - \overline{x})^2$ 198,81	use of a se the pen $(y - \overline{y})^2$ $118,81$	✓ using the table ✓ calculating the value o If incorrect table but corr	rect
	x 16 36 20	cal and TIVI y 45 70 44	culator. d paper \overline{z} $(x-\overline{x})$ $-14,1$ $5,9$ $-$ $10,1$	The alternmethod as $(y - \overline{y})$ $-10,9$ $14,1$ $-11,9$	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$	$(x - \bar{x})^2$ $198,81$ $34,81$ $102,01$	e use of a se the pen $(y - \overline{y})^2$ 118,81 198,81 141,61	✓ using the table ✓ calculating the value o If incorrect table but corr substitution into formula	rect
	x 16 36	cal and TIVI y 45 70	culator. d paper E $(x-\overline{x})$ -14,1 5,9 - 10,1 7,9	The altern method as $(y - \bar{y})$ -10,9 14,1 -11,9 0,1	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$ $0,79$	$(x - \overline{x})^2$ $(x - \overline{x})^2$ $198,81$ $34,81$ $102,01$ $62,41$	$(y - \overline{y})^{2}$ $(y - \overline{y})^{2}$ $118,81$ $198,81$ $141,61$ $0,01$	✓ using the table ✓ calculating the value o If incorrect table but corr	rect
	x 16 36 20 38	cal and TIVI y 45 70 44 56	culator. d paper \overline{z} $(x-\overline{x})$ $-14,1$ $5,9$ $-$ $10,1$	The alternmethod as $(y - \overline{y})$ $-10,9$ $14,1$ $-11,9$	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$	$(x - \bar{x})^2$ $198,81$ $34,81$ $102,01$	e use of a se the pen $(y - \overline{y})^2$ 118,81 198,81 141,61	✓ using the table ✓ calculating the value o If incorrect table but corr substitution into formula	rect
	x 16 36 20 38 40	cal and TIVI y 45 70 44 56 60	culator. d paper E $(x-\overline{x})$ -14,1 5,9 - 10,1 7,9 9,9	The altern method as $(y - \overline{y})$ -10,9 14,1 -11,9 0,1 4,1	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ 153,69 83,19 120,19 0,79 40,59	$(x - \overline{x})^2$ $(x - \overline{x})^2$ $198,81$ $34,81$ $102,01$ $62,41$ $98,01$	use of a se the pen $(y - \overline{y})^2$ 118,81 198,81 141,61 0,01 16,81	✓ using the table ✓ calculating the value o If incorrect table but corr substitution into formula	rect
	x 16 36 20 38 40 30	cal and TIVI y 45 70 44 56 60 48	culator. d paper E $(x-\frac{x}{x})$ -14,1 5,9 -10,1 7,9 9,9 -0,1	The altern method as $(y - \overline{y})$ -10,9 14,1 -11,9 0,1 4,1 -7,9	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$ $0,79$ $40,59$ $0,79$	$(x - \bar{x})^2$ $(x - \bar{x})^2$ $198,81$ $34,81$ $102,01$ $62,41$ $98,01$ $0,01$	$(y - \overline{y})^{2}$ $(y - \overline{y})^{2}$ $118,81$ $198,81$ $141,61$ $0,01$ $16,81$ $62,41$	✓ using the table ✓ calculating the value o If incorrect table but corr substitution into formula	rect
	x 16 36 20 38 40 30 35	cal and TIVI y 45 70 44 56 60 48 75 60 63	culator. d paper \overline{x} $(x-\overline{x})$ -14,1 5,9 -10,1 7,9 9,9 -0,1 4,9 -8,1 9,9	The altern method as $(y - \overline{y})$ -10,9 14,1 -11,9 0,1 4,1 -7,9 19,1 4,1 7,1	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$ $0,79$ $40,59$ $0,79$ $93,59$ $-33,21$ $70,29$	$(x - \overline{x})^2$ 198,81 34,81 102,01 62,41 98,01 0,01 24,01 65,61 98,01	$(y - \overline{y})^{2}$ $(y - \overline{y})^{2}$ $118,81$ $198,81$ $141,61$ $0,01$ $16,81$ $62,41$ $364,81$ $16,81$ $50,41$	✓ using the table ✓ calculating the value o If incorrect table but corr substitution into formula	rect
	x 16 36 20 38 40 35 22 40 24	cal and TIVI y 45 70 44 56 60 48 75 60 63 38	culator. d paper E $(x-\overline{x})$ -14,1 5,9 -10,1 7,9 9,9 -0,1 4,9 -8,1 9,9 -6,1	The altern method as $(y - \overline{y})$ -10,9 14,1 -11,9 0,1 4,1 -7,9 19,1 4,1 7,1 -17,9	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$ $0,79$ $40,59$ $0,79$ $93,59$ $-33,21$ $70,29$ $109,19$	$(x - \bar{x})^2$ 198,81 34,81 102,01 62,41 98,01 0,01 24,01 65,61 98,01 37,21	$(y - \overline{y})^{2}$ $(y - \overline{y})^{2}$ $118,81$ $198,81$ $141,61$ $0,01$ $16,81$ $62,41$ $364,81$ $16,81$ $50,41$ $320,41$	✓ using the table ✓ calculating the value o If incorrect table but corr substitution into formula	rect
	x 16 36 20 38 40 30 35 22 40	cal and TIVI y 45 70 44 56 60 48 75 60 63	culator. d paper \overline{x} $(x-\overline{x})$ -14,1 5,9 -10,1 7,9 9,9 -0,1 4,9 -8,1 9,9	The altern method as $(y - \overline{y})$ -10,9 14,1 -11,9 0,1 4,1 -7,9 19,1 4,1 7,1	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$ $0,79$ $40,59$ $0,79$ $93,59$ $-33,21$ $70,29$	$(x - \overline{x})^2$ 198,81 34,81 102,01 62,41 98,01 0,01 24,01 65,61 98,01	$(y - \overline{y})^{2}$ $(y - \overline{y})^{2}$ $118,81$ $198,81$ $141,61$ $0,01$ $16,81$ $62,41$ $364,81$ $16,81$ $50,41$	✓ using the table ✓ calculating the value o If incorrect table but corresubstitution into formula ✓ value of a	rect
Sum Mean	x 16 36 20 38 40 30 35 22 40 24 301 30,1 Cons	cal and TIVI y 45 70 44 56 60 48 75 60 63 38 559 55,9 sider	culator. d paper E $(x-\overline{x})$ -14,1 5,9 -10,1 7,9 9,9 -0,1 4,9 -8,1 9,9 -6,1 0 the equ	The altern method as $(y - \overline{y})$ -10,9 14,1 -11,9 0,1 4,1 -7,9 19,1 4,1 7,1 -17,9 0 ation of the	native to the calcul indicated below. $(x - \overline{x})(y - \overline{y})$ $153,69$ $83,19$ $120,19$ $0,79$ $40,59$ $0,79$ $93,59$ $-33,21$ $70,29$ $109,19$	$(x - \bar{x})^2$ 198,81 34,81 102,01 62,41 98,01 0,01 24,01 65,61 98,01 37,21 720,9	use of a se the pen $(y - \overline{y})^2$ 118,81 198,81 141,61 0,01 16,81 62,41 364,81 16,81 50,41 320,41 1290,9	✓ using the table ✓ calculating the value o If incorrect table but corresubstitution into formula ✓ value of a No penalty for incorrect	rect

	Using $\hat{y} = a + bx$ and \bar{x} and \bar{y} , 55,9 = a + (0,88653)(30,1) a = 29,22 (29,21542516) Therefore equation of line of least squares is $y = 29,22 + 0,89x$ Also accept $y = 29 + x$	If the equation is y = 0.89 + 29.22x 3 out of 4 \checkmark equation	
6.4	y = 29,22 + (0,89)(22) = 48,8	✓ substituting 22	
	Therefore the employee who undergoes 22 hours of training should produce about 49 units.	√answer	(2)
6.5	<i>r</i> = 0,66	✓✓✓ answer	(3)
	OR		(0)
	$s_y = \sqrt{\frac{\sum (y - \overline{y})^2}{n}} = \sqrt{\frac{1290.9}{10}} = 11,36$	✓ s _y	
	$s_x = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = \sqrt{\frac{720.9}{10}} = 8,49$	$\checkmark s_x$	
	Using $b = r \frac{s_y}{s_x}$, we have $0.89 = r \frac{11.36}{8.49}$ r = 0.66	✓ answer	(3)
6.6	Not a strong relationship because r is much less than 1 Positive correlation I would suggest that the manager look at the training programme and possibly revise it to meet the demands of the job.	✓ not very strong or NO ✓ advice to manager	(2)
	There is a positive correlation between the hours of training and productivity levels. However, the value of r does not indicate a very strong relationship between hours of training and productivity levels. I would suggest that the manager look at the training programme and possibly revise it to meet the demands of the job.	t]	[6]



Mathen	natics/P3	10 NSC – Memorandum	DoE/November	2008
8.3	$\hat{A_1} = \hat{Q}_3 + \hat{B}$		$\checkmark \hat{\mathbf{P}} = \hat{\mathbf{A}}_1 = 2x$ $\checkmark \hat{\mathbf{A}}_1 = \hat{\mathbf{Q}}_3 + \hat{\mathbf{B}} = 2x$ $\checkmark \hat{\mathbf{Q}}_3 = 2\hat{\mathbf{R}}_1$	
	OR			
	$\hat{A}_1 = \hat{Q}_3 + \hat{B} =$ And $\hat{P} = \hat{A}_1 =$	(from above) 2x(exterior angle of triangle) 2x(angles in the same segment) $T\hat{R}P$	$\checkmark \hat{R}_1 + \hat{R}_2 = 2x$ $\checkmark \hat{A}_1 = \hat{Q}_3 + \hat{B} = 2x$ $\checkmark \hat{P} = \hat{A}_1 = 2x$	
				(3) [8]

9.5.1	$\frac{\text{TS}}{\text{RW}} = \frac{\text{QT}}{\text{QR}} \dots \Delta \text{QWR} \parallel \Delta \text{QST}$ $\therefore \frac{\text{TS}}{2} = \frac{8}{4}$ $4\text{TS} = 16$ $\therefore \text{TS} = 4 \text{ cm}$	$\checkmark \frac{\text{TS}}{\text{RW}} = \frac{\text{QT}}{\text{QR}}$ $\checkmark \frac{\text{TS}}{2} = \frac{8}{4}$ $\checkmark \text{TS} = 4 \text{ cm}$	(3)
9.5.2	$\frac{SQ}{WQ} = \frac{TS}{RW}$ $SQ = \frac{4 \times 5}{2} = 10 cm$ $\therefore SR = SQ - RQ$ $= 6 cm$	✓ $\frac{SQ}{WQ} = \frac{TS}{RW}$ ✓ 10 cm ✓ 6 cm	(3) [16]

10.4.1 $\frac{\Delta ADC}{\Delta ABD} = \frac{3}{2}$	✓ answer	(1)
10.4.2 $\frac{\Delta \text{TEC}}{\Delta \text{ABC}} = \frac{\Delta \text{TEC}}{\Delta \text{TBC}} \times \frac{\Delta \text{TBC}}{\Delta \text{ABC}}$	✓ ratios	
$=\left(\frac{1}{5}\right)\left(\frac{1}{3}\right)$	✓ substitution	
$=\frac{1}{15}$	✓ answer	(3)
OR		
$\frac{\text{area }\Delta\text{TEC}}{\text{area }\Delta\text{ABC}} = \frac{\frac{1}{2}.\text{TC.EC.sin }\hat{C}}{\frac{1}{2}.\text{AC.BC.sin }\hat{C}}$	✓ ratios	
$=\frac{\text{TC.EC}}{\text{AC.BC}}$	✓ substitution	
$=\left(\frac{1}{5}\right)\left(\frac{1}{3}\right)$	✓ answer	(3)
$=\frac{1}{15}$	Answer Only : 3/3	[9]

TOTAL: 100