

MATHEMATICS SCHOOL-BASED ASSESSMENT EXEMPLARS – CAPS

GRADE 12

TEACHER GUIDE

CONTENTS

1.	Introduction	3
2.	Aims and objectives	3
3.	Assessment tasks	3
4.	Programme of assessment	4
5.	Quality assurance process	4
6.	Exemplar Tasks	5
	 6.1 Assignment: Term 1 6.2 Investigation 1: Term 1 6.3 Investigation 2: Term 2 6.4 Project: Term 2 	
7.	Marking guideline and rubric	17

1. INTRODUCTION

Assessment is a continuous, planned process using various forms of tasks in order to identify, gather and interpret information about the performance of learners. It involves four steps: generating and collecting evidence of achievement, evaluating this evidence, recording the findings and using this information to understand and assist in the learner's development in order to improve the process of learning and teaching. Assessment should be both informal (assessment for learning) and formal (assessment of learning). In both cases regular feedback should be provided to learners to enhance the learning experience.

2. AIMS AND OBJECTIVES

The purpose of this document is to provide both educators and learners with a set of benchmarked school-based assessment (SBA) tasks. It contains useful information and guidelines in the form of exemplars.

The aim of assessment for teaching and learning is to collect information on a learner's achievement which can be used to improve individual learning. The DBE embarked on a nationwide moderation process of SBA tasks, and it was discovered during this process that many schools across the country do not follow the requirements and guidelines when setting tasks, particularly the investigation and assignment; hence these exemplars were developed to be used by educators as a guide when developing their own tasks.

3. ASSESSMENT TASKS

Although assessment guidelines are included in the annual teaching plan at the end of each term, the following general principles apply:

Tests and examinations are usually time-limited and assessed using a marking memorandum.

Assignments are generally extended pieces of work in which time constraints have been relaxed and which may be completed at home. Assignments may be used to consolidate or deepen understanding of work done earlier. They may thus consist of a collection of past examination questions or innovative activities using any resource material. It is, however, advised that assignments be focused.

Projects are more extended tasks that may serve to deepen understanding of curricular mathematics topics. They may also involve extracurricular mathematical topics where the learner is expected to select appropriate mathematical content to solve context-based or real-life problems. The focus should be on the mathematical concepts and not on duplicated pictures and regurgitation of facts from reference material.

Investigations are set to develop the mathematical concepts or skills of systematic investigation into special cases with a view to observing general trends, making conjectures and proving them. It is recommended that while the initial investigation can be done at home, the final write-up be done in the classroom, under supervision and without access to any notes. Investigations are marked using a rubric which can be specific to the task, or generic, listing the number of marks awarded to each skill as outlined below:

40% for communicating individual ideas and discoveries, assuming the reader has not
come across the task before. The appropriate use of diagrams and tables will enhance the
assignment, investigation or project.
35% for generalising, making conjectures and proving or disproving these conjectures;
20% for the effective consideration of special cases; and
5% for presentation, that is, neatness and visual impact.

4. PROGRAMME OF ASSESSMENT

All assessment tasks that make up a formal programme of assessment for the year are regarded as formal assessment. Formal assessment tasks are marked and formally recorded by the teacher for progress and certification purposes. All formal assessment tasks are subject to moderation for purposes of quality assurance. Generally, formal assessment tasks provide teachers with a systematic way of evaluating how well learners are progressing in a grade and/or a particular subject. Examples of formal assessment tasks include tests, examinations, practical tasks, projects, oral presentations, demonstrations, performances, etc. Formal assessment tasks form part of a year-long formal programme of assessment in each grade and subject.

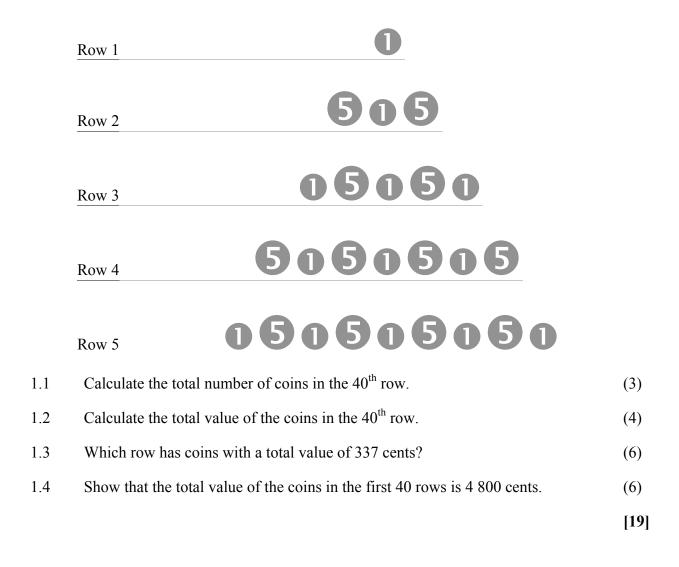
Formal assessment tasks in mathematics include tests, mid-year examination, preparatory examination (Grade 12), an assignment, a project or an investigation. The forms of assessment used should be appropriate to the age and developmental level of learners. The design of these tasks should cover the content of the subject and include a variety of activities designed to achieve the objectives of the subject. Formal assessment tasks need to accommodate a range of cognitive levels and abilities of learners as indicated in the FET curriculum and assessment policy statement (CAPS).

Informal assessment involves daily monitoring of a learner's progress. This can be done through observations, discussions, practical demonstrations, learner-teacher conferences, informal classroom interactions, etc. Informal assessment may be as simple as stopping during the lesson to observe learners or to discuss with learners how learning is progressing. Informal assessment should be used to provide feedback to learners and to inform planning for teaching and learning, and it need not be recorded. This should not be seen as separate from learning activities taking place in the classroom. Learners or teachers can evaluate these tasks. Self-assessment and peer assessment actively involve learners in assessment. Both are important as they allow learners to learn from and reflect on their own performance. The results of the informal daily assessment activities are not formally recorded, unless the teacher wishes to do so. The results of informal daily assessment tasks are not taken into account for promotion and/or certification purposes.

5. **OUALITY ASSURANCE PROCESS**

A team of experts comprising teachers and subject advisors from different provinces was appointed by the DBE to develop and compile the assessment tasks in this document. The team was required to extract excellent pieces of learner tasks from their respective schools and districts. This panel of experts spent a period of four days at the DBE developing tasks based on guidelines and policies. Moderation and quality assurance of the tasks were undertaken by national and provincial examiners and moderators. The assessment tasks were further refined by the national internal moderators to ensure that they are in line with CAPS requirements.

1. ASSIGNMENT: SEQUENCES AND SERIES


TOTAL: 60

INSTRUCTIONS

- 1. Answer all the questions.
- 2. Clearly show all calculations you have used in determining your answers.
- 3. Round answers off to TWO decimal places, unless stated otherwise.
- 4. Number your answers correctly according to the numbering system used in this question paper.
- 5. Write neatly and legibly.

QUESTION 1

Lucy is arranging 1-cent and 5-cent coins in rows. The pattern of the coins in each row is shown below.

QUESTION 2

The sum of the first n terms of a sequence is given by: $S_n = n(23 - 3n)$

- 2.1 Write down the first THREE terms of the sequence. (5)
- 2.2 Calculate the 15th term of the sequence. (3)

[8]

QUESTION 3

The sum of the second and third terms of a geometric sequence is 280, and the sum of the fifth and the sixth terms is 4 375. Determine:

- 3.1 The common ratio AND the first term. (6)
- 3.2 The sum of the first 10 terms. (2)

[8]

QUESTION 4

Determine the value of *k* if:

$$\sum_{t=1}^{\infty} 4.k^{t-1} = 5$$
 [6]

QUESTION 5

Given the series: $2(5)^5 + 2(5)^4 + 2(5)^3 + ...$

Show that this series converges. [2]

QUESTION 6

If 2; x; 18; ... are the first three terms of a geometric sequence, determine the value(s) of x. [4]

QUESTION 7

Given: $T_n = 3^{n+1}$. Which term is the first to exceed 20 000? [4]

QUESTION 8

The sequence 3; 9; 17; 27; ... is a quadratic sequence.

- 8.1 Write down the next term of the sequence. (1)
- 8.2 Determine an expression for the nth term of the sequence. (4)
- 8.3 What is the value of the first term of the sequence that is greater than 269? (4)

[9]

TOTAL:60

2. INVESTIGATION 1: FUNCTIONS AND INVERSES

INSTRUCTIONS

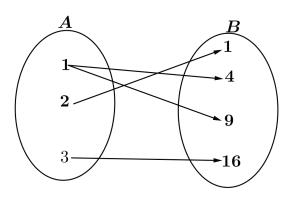
- 1. Answer all the questions.
- 2. Clearly show all calculations you have used in determining your answers.
- 3. Round answers off to TWO decimal places, unless stated otherwise.
- 4. Number your answers correctly according to the numbering system used in this question paper.
- 5. Write neatly and legibly.

PART 1: WHICH RELATIONS CONSTITUTE FUNCTIONS?

One-to-one relation: A relation is one-to-one if for every input value there is only one

output value.

Many-to-one relation: A relation is many-to-one if for more than one input value there

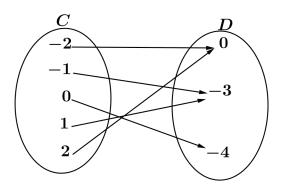

is one output value.

One-to-many relation: A relation is one-to-many if for one input value there is more

than one output value.

1.1 Determine the type of relation in each case and give a reason.

1.1.1



(1)

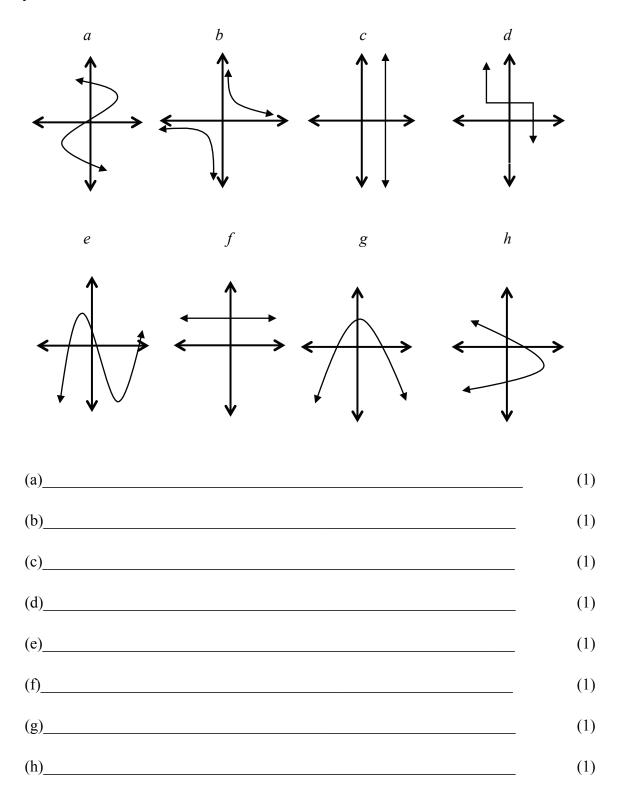
1.1.2 {(1; 3), (2; 5), (6; 13), (7; 15)}

(1)

1.1.3

(1)

A function is a set of ordered number pairs where no two ordered pairs have the same x-coordinate, or put differently: a function is a set of ordered pairs where, for every value of x there is one and only one value for y. However, for the same value of y there may be different values for x.

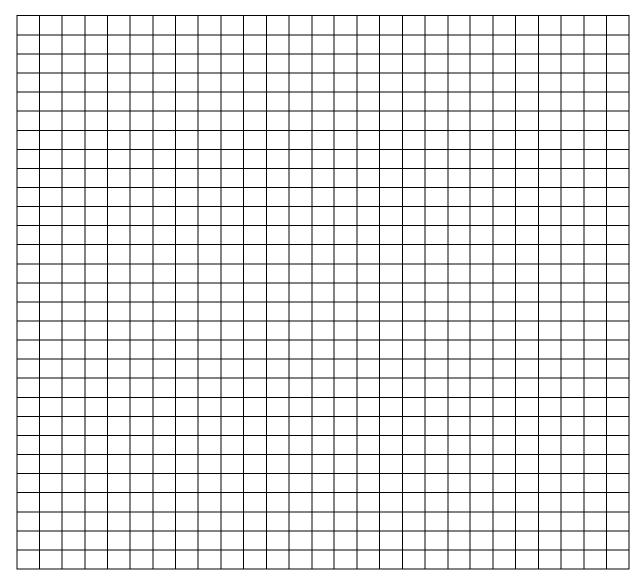

1.2 Which of the relations (in QUESTIONS 1.1.1 to 1.1.3) are functions? Why?

- (b) (1)
- (c) (1)

The vertical-line test is used to determine whether or not a given graph is a function.

To determine whether a graph is a function, do the vertical-line test. If any vertical line intersects the graph of f only once, then f is a function; and if any vertical line intersects the graph of f more than once, then f is not a function.

1.3 Determine whether or not the following graphs are functions. Give a reason for your answer.



PART 2: THE INVERSE OF AN EXPONENTIAL FUNCTION

2.1 Consider the equation $g(x) = 2^x$. Now complete the following table:

x	- 3	-2	- 1	0	1	2
y						

2.2 Sketch the graph of g.

- 2.3 Sketch the graph of f(x) = x as a dotted line on the same set of axes as g. (1)
- 2.4 Complete the table below for h, if h is g when the x and y values are interchanged.

	x			
J	y			

Draw h on the same set of axes as g.

y = 2	$x = 2^y$
5.1_	
.5.2_	
	down the domain and range of:
2.6.1	$y = 2^x$
	Domain:
	Range:
2.6.2	$x = 2^y$
	Domain:
	Range :
2.6.3	What is the relationship between the domain and the range of the two
	graphs in 2.6.1 and 2.6.2
2.6.4	Are both graphs functions? Give a reason for your answer.
2.6.4	
	Are both graphs functions? Give a reason for your answer.

PART 3: WHEN IS THE INVERSE OF A QUADRATIC FUNCTION ALSO A FUNCTION?

3.1 Given: $f(x) = 2x^2$, for $x \in \mathbb{R}$

(1)

3.1.1 Write down the equation of the inverse of f.

3.1.2 Write down the turning points of both f and its inverse.

(2)

3.1.3 Sketch the graphs of f and its inverse on the same set of axes.

(2)

3.1.4 Decide whether or not the inverse of f is a function, and give a reason for your answer.

(2)

3.1.5 Explain how you would restrict the domain of f such that its inverse is a function.

(2)

3.1.6 Hence, write down the corresponding range of the inverse of f if:

(a) $x \le 0$ ______ (1)

 $(b) x \ge 0 \tag{1}$

	TOTAL:
	(2)
Are the two graphs in QUESTION 3.1.7 functions? Give a reason or reasons for your answer.	
Are the two groups in OHESTION 2.1.7 functions? Cive a record	(2)

3. INVESTIGATION 2: APPLICATION OF DIFFERENTIAL CALCULUS

TOTAL: 50

INSTRUCTIONS

- 1. Answer all the questions.
- 2. Clearly show all calculations you have used in determining your answers.
- 3. Round answers off to TWO decimal places, unless stated otherwise.
- 4. Number your answers correctly according to the numbering system used in this question paper.
- 5. Write neatly and legibly.

OBJECTIVE: Investigating the point of inflection of a cubic graph and its relationship with the graphs of the first and the second derivatives.

CASE 1

Given: $f(x) = x^3 - 7x^2 + 36$

- 1.1 Draw the graph of f neatly on graph paper. Clearly indicate all intercepts and coordinates of turning points. (8)
- 1.2 Determine the first derivative of f, and name it g. (1)
- 1.3 Draw the graph of g on the same set of axes as f. Clearly show all intercepts and the turning point. (3)
- 1.4 Determine the second derivative of f and name it h. Then sketch the graph of h on the same set of axes as f and g. Clearly show all intercepts of the graph with the axes.
- 1.5 What do you notice regarding the *x*-intercepts of the quadratic function and the *x*-coordinates of the turning points of the cubic function? (1)
- 1.6 The point of inflection can be determined by solving f''(x) = 0. It can also be determined by calculating the midpoint of the turning points of the cubic graph. Hence, determine the point of inflection of f.
- 1.7 What do you notice regarding the axis of symmetry of g, the x-intercept of h and the x-coordinate of the point of inflection of f?

[20]

CASE 2

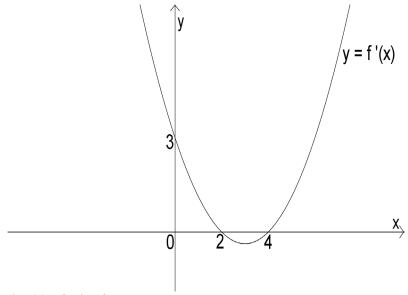
Given: $f(x) = -x^3 - 2x^2 + 4x + 8$

- 2.1 Draw the graph of f neatly on graph paper. Clearly indicate all intercepts and coordinates of turning points. (7)
- 2.2 Determine the first derivative of f, and name it g. (1)
- 2.3 Draw the graph of g on the same set of axes as f, and clearly show all intercepts and the turning point. (4)
- 2.4 Determine the second derivative of f and name it h, then sketch the graph of h on the same set of axes as f and g. Clearly show all intercepts of the graph with the axes. (3)
- 2.5 What do you notice regarding the x-intercepts of the quadratic function and the (1)

x-coordinates of the turning points of the cubic function?

- 2.6 The point of inflection can be determined by solving f''(x) = 0. It can also be determined by calculating the midpoint of the turning points of the cubic graph. Hence, determine the point of inflection of f.
- 2.7 What do you notice regarding the axis of symmetry of g, the x-intercept of h and the x-coordinate of the point of inflection of f?

[20]


3. CONCLUSION

Based on the two cases, what conclusion can you draw about the point of inflection of a cubic function in relation to the graphs of the first and second derivatives?

[2]

4. APPLICATION

The parabola shown below is the graph of the derivative of a function f.

- 4.1 For what value(s) of x is f:
 - 4.1.1 Increasing (2)
 - 4.1.2 Decreasing (2)
- 4.2 Give the abscissae of the turning point(s) of y = f(x). (2)
- 4.3 Classify the stationary point(s). (2)
 - [8]

TOTAL: 50

4. PROJECT: A PRACTICAL APPLICATION OF DIFFERENTIAL CALCULUS TOTAL: 50

INSTRUCTIONS

- 1. Answer all the questions.
- 2. Clearly show all calculations you have used in determining your answers.
- 3. Round answers off to TWO decimal places, unless stated otherwise.
- 4. Number your answers correctly according to the numbering system used in this question paper.
- 5. Write neatly and legibly,
- 6. Sketch the containers according to the given specifications.
- 7. Mathematical methods and formulae need to be used to plan and sketch the containers
- 8. All calculations and planning of the side lengths and surface areas must be neatly and clearly presented in writing and sketches.

CONTAINERS

- A: A container with a rectangular base
- B: A container with a circular base
- C: A container with a triangular base

SPECIFICATIONS

Each container must hold exactly one litre of liquid.
Each container must have a minimum surface area.
The surface area of each container must include the lid.
The length of the rectangular base must be twice the breadth.
The triangular container must have an equilateral base.

FURTHER COMPARISON

Apart from your conclusion based on the three options, what other shape of soft drink container would you use in the manufacturing of soft drink cans? Give a reason for your answer.

HINT: The shape in question would be the most economical to manufacture but may not be the most practical choice.

RUBRIC

CRITERIA	MAXIMUM	MARI	KS AWA	RDED
	MARK	A	В	C
Correct mathematical formulae	3 x 3			
Correct calculations:				
Measurements of bases	4 x 3			
Height of the containers	2 x 3			
Logical reasoning and presentation	3 x 3			
Submitting on time	2			
Conclusion of the least material needed	1 x 3			
Final, further comparison	1 x 3			
Sketches	2 x 3			
TOTAL	50			

1. ASSIGNMENT MEMORANDUM: SEQUENCES AND SERIES

TOTAL: 60

1.1			
	The sequence below can be used to determine the		
	total number of coins in the 40 th row:		
	1; 3; 5; 7	\checkmark for $d=2$	
	Arithmetic sequence		
	a = 1 and $d = 2$		
	$T_{40} = ?$	✓ substitution in correct formula	
	$T_n = a + (n-1)d$		
		✓ answer	
	$T_{40} = 1 + (40 - 1)2$		
	= 79		
	OR		
	n = 40, which is an even number	/T - 2m 1	
	$\therefore \text{ Number of coins: } T_n = n - 1 + n$	$\checkmark T_n = 2n - 1$ \checkmark substitution in correct formula	
	$T_n = 2n - 1$	✓ substitution in correct formula ✓ answer	
	$T_{40} = 2(40) - 1$	• allswel	
	= 79		(3)
	, ,		(3)
1.2	n = 40, which is an even number	$\checkmark(n-1)$	
1.2	$\therefore T_n = (n-1)(1) + n(5)$	$\sqrt{5n}$	
	Total value = $(40-1)(1) + h(3)$	✓ substitution in correct formula	
	= 39 + 200	✓ answer	
	= 239	· unswer	
	OR		
	Even rows form arithmetic sequence:		
	11; 23; 35; 42	✓ for sequence	
	a = 11; d = 12; n = 20	$\checkmark d = 12$	
	$T_n = a + (n-1)d$	✓ substitution in correct formula	
	$T_{20} = 11 + (20 - 1)(12)$	✓ answer	
	= 239		(4)
1.3	If <i>n</i> is odd :		
	$T_n = (n-1)(5) + n(1) = 6n - 5$	(n-1)(5) + n(1) = 337	
	$T_n = 337$	✓ equation	
	n = ?		
	(n-1)(5) + n(1) = 337		
	(n-1)(5) + n(1) = 337 5n - 5 + n = 37	✓simplifying	
	5n - 5 + n = 37		
	, , , , , , , , , , , , , , , , , , , ,	✓ simplifying ✓ answer	
	5n - 5 + n = 37		
	5n - 5 + n = 37 $6n = 342$ $n = 57$		
	5n - 5 + n = 37 $6n = 342$ $n = 57$ If n is even:	✓ answer	
	$5n-5+n=37$ $6n=342$ $n=57$ If n is even: $T_n = (n-1)(1) + n(5) = 337$	✓ answer $(n-1)(1) + n(5) = 337$	
	$5n-5+n=37$ $6n=342$ $n=57$ If n is even: $T_n = (n-1)(1) + n(5) = 337$ $6n-1=337$	✓ answer $(n-1)(1) + n(5) = 337$	
	$5n-5+n=37$ $6n = 342$ $n = 57$ If n is even: $T_n = (n-1)(1) + n(5) = 337$ $6n-1 = 337$ $6n = 338$	✓ answer $(n-1)(1) + n(5) = 337$ ✓ equation	
	$5n-5+n=37$ $6n=342$ $n=57$ If n is even: $T_n = (n-1)(1) + n(5) = 337$ $6n-1=337$	✓ answer $(n-1)(1) + n(5) = 337$ ✓ equation ✓ answer	
	$5n-5+n=37$ $6n = 342$ $n = 57$ If n is even: $T_n = (n-1)(1) + n(5) = 337$ $6n-1 = 337$ $6n = 338$	✓ answer $(n-1)(1) + n(5) = 337$ ✓ equation ✓ answer	

1.4

$$S_{40} = 1 + 11 + 13 + 23 + 25 + 35 + \dots + 239$$

$$= (1 + 13 + 25 + \dots) + (11 + 23 + 35 + \dots)$$

$$= \frac{20}{2} [2 + (20 - 1)12] + \frac{20}{2} [22 + (20 - 1)2]$$

$$= 10(230) + 10(250)$$

$$= 4800 \text{ cents}$$

✓ for generating sequence

$$\checkmark$$
(1 + 13 + 25 + ···)

$$\sqrt{\frac{20}{2}}[2+(20-1)12]$$

$$\sqrt{\frac{20}{2}}[22 + (20 - 1)2]$$

 $\checkmark 2(1+3+5+\cdots)$

√ answer

OR

Series for 1-cent coins:

$$S_{40} = 1 + 1 + 3 + 3 + 5 + 5 + \dots + 39 + 39$$

= $2(1 + 3 + 5 + \dots)$
= $2S_{20}$

$$a = 1, d = 2, n = 20$$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_{40} = 2\left[\frac{20}{2}(2 + (20 - 1)2)\right]$$

= 800 coins

✓ 800 coins

Series for 5-cent coins:

$$S_{40} = 0 + 2 + 2 + 4 + 4 + 6 + 6 + \dots + 38 + 40$$

= $(0 + 2 + 4 + 6 + \dots) + (2 + 4 + 6 + \dots)$

Note: This is a combination of two arithmetic series:

$$0+2+4+6+\cdots$$
; $a=0$ and $d=2$ $n=20$

$$2+4+6+8+\cdots$$
; $a=2$ and $d=2$ $n=2$

$$\therefore S_{40} = \frac{20}{2} [0 + (20 - 1)2] + \frac{20}{2} [4 + (20 - 1)2]$$

= 380 + 420

= 800 coins

Total value is: 800(1) + 800(5) = 4800 cents

✓ for generating sequence

✓ for splitting sequence

✓ 800

√4 800

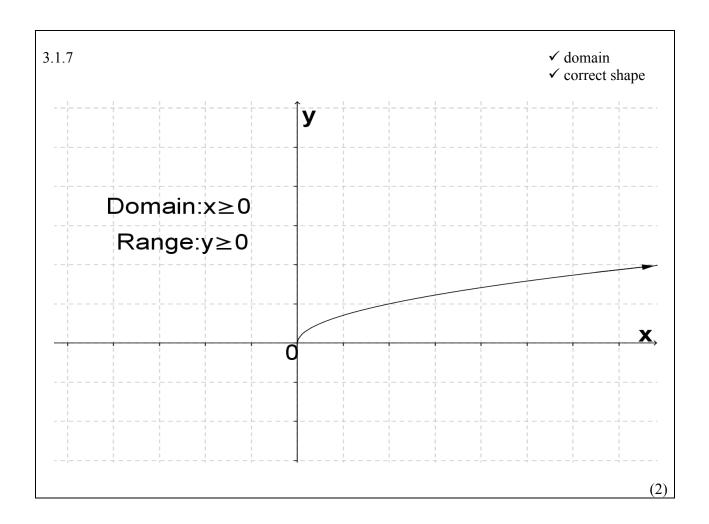
(6)

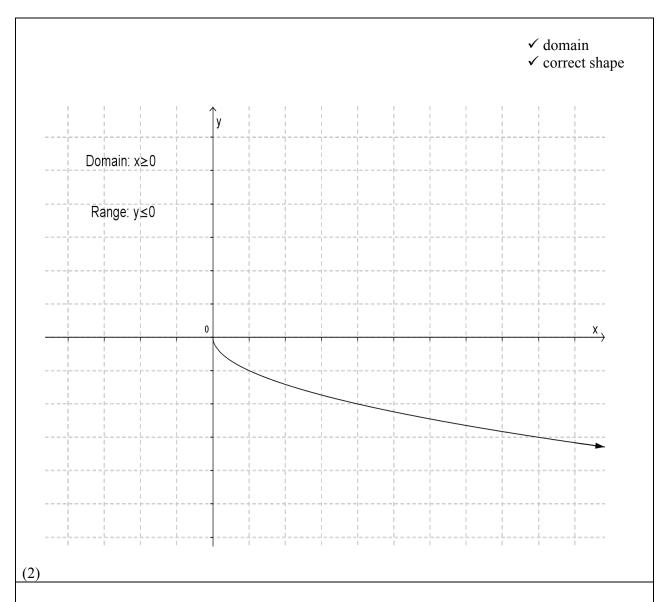
2.		
2.1	$S_n = n(23 - 3n)$	✓ substitution in formula
	$S_1 = 1[23 - 3(1)]$	$S_1 = 1[23 - 3(1)]$
	$S_1 = 20$	
	$T_1 = 20$	√value
	$S_2 = 2[23 - 3(2)]$	$T_1 = 20$
	$S_2 = 34$	-1
	$T_2 = S_2 - S_1$	✓value
	= 34 - 20	$S_2 = 34$
	_ 31 20	
	$T_2 = 14$	√value
	$S_3 = 3[23 - 3(3)]$	$T_2 = 14$
	$S_3 = S[23 - S(3)]$ $S_3 = 42$	
	$T_3 = 42 - 34$	✓value
	$r_3 - 42 - 34$ = 8	$T_3 = 8$
	– 0	(5)
2.2	20; 14; 8;	
2.2	a = 20; d = -6	\checkmark value of d
	The sequence is arithmetic.	value of a
	The sequence is arithmetic.	
	$T_n = a + (n-1)d$	✓ substitution in the correct formula
	$T_{15} = 20 + (14)(-6)$	Substitution in the correct formula
	$T_{15} = 20 + (14)(-6)$ $T_{15} = -64$	✓answer
	$I_{15} = -04$	(3)
		(3)
3.		
3.1		
	$ar^2 + ar = 280(1)$	$\sqrt{ar^2 + ar} = 280$
	(-)	
		✓
	$ar^4 + ar^5 = 4375(2)$	$ar^4 + ar^5 = 4375$
	w w 10,0(2)	1979
	(1) $ar^4 + ar^5$ 4375	
	$\frac{(1)}{(2)} \cdot \frac{ar^4 + ar^5}{ar + ar^2} = \frac{4375}{280}$	✓
		$\frac{ar^4 + ar^5}{ar + ar^2} = \frac{4375}{280}$
		$\frac{m}{m} + \frac{m^2}{m^2} = \frac{1676}{200}$
		$ar + ar^2 = 200$
	(1). $ar^4(1+r) = 4375$	
	$\frac{(1)}{(2)} \cdot \frac{ar^4(1+r)}{ar(1+r)} = \frac{4375}{280}$	
		✓ for common factor
	$r^3 = \frac{125}{8}$	· 101 common factor
	' <u>-</u> 8	
	_	125
	$r = \frac{5}{2}$	$\checkmark r^3 = \frac{125}{8}$
	$r - \frac{1}{2}$	δ
		✓ answer
		(6)
		1 (0)

3.2	$ar^2 + ar = 280$	
	$a\left[\left(\frac{5}{2}\right)^2 + \frac{5}{2}\right] = 280$	
	$a\left(\frac{25}{4} + \frac{5}{2}\right) = 280$	$\sqrt{a} \left[\left(\frac{5}{2} \right)^2 + \frac{5}{2} \right] = 280$ Substitution of the value of r in equation (1)
	$a\left(\frac{35}{4}\right) = 280$	or (2) ✓ answer
	a = 32	(2)
3.3	$S_n = \frac{a(r^n - 1)}{r - 1}$	
	$a = 32$, $r = \frac{5}{2}$ or 2,5	
	$S_{10} = \frac{32\left[\left(\frac{5}{2}\right)^{10} - 1\right]}{2,5 - 1}$	✓ substitution in the correct formula
	= 203429,19	✓ answer (2)
4.	$\sum_{n=0}^{\infty} 4.k^{r-1} = 5$	
	$r=1$ $4+4k+4k^2+4k^3=5$	✓ for the series
	$S_{\infty} = \frac{a}{1-r}$	\checkmark equating the series to 5 $\checkmark r = k$
	$a=4$, $r=k$, $S_{\infty}=5$	
	$5 = \frac{4}{1 - k}$	$\sqrt{5} = \frac{4}{1 - k}$ substitution in the formula
	5 - 5k = 4	✓simplifying
	5k = 1	✓ answer
	$k = \frac{1}{5}$	(6)

5.	$2(5)^5 + 2(5)^4 + 2(5)^3 + \cdots$	
	$r = \frac{T_2}{T_1}$ $r = \frac{2(5)^4}{2(5)^5}$ $r = \frac{1}{5}$	$r = \frac{1}{5}$
	For convergence $-1 < r < 1$	
	Since: $-1 < \frac{1}{5} < 1$	$\checkmark -1 < \frac{1}{5} < 1$
	This implies that the series converges.	(2)
6.	$ \frac{x}{2} = \frac{18}{x} $ $ x^2 = 36 $ $ x^2 - 36 = 0 $ $ (x - 6)(x + 6) = 0 $ $ x = 6 \text{ or } x = -6 $	$\sqrt{\frac{x}{2}} = \frac{18}{x}$ $\sqrt{x^2} = 36$ $x^$
	OR $ \frac{x}{2} = \frac{18}{x} $ $ x^2 = 36 $ $ x = \pm \sqrt{36} $ $ x = \pm 6 $	$\sqrt{\frac{x}{2}} = \frac{18}{x}$ $\sqrt{x^2} = 36$ $\sqrt{x} = \pm \sqrt{36}$ $x = \pm 6\sqrt{1}$ 1 mark for both values of x

7	27+1 > 20,000	
7.	$3^{n+1} > 20\ 000$./2n+1 > 20 000
		$\sqrt{3^{n+1}} > 20000$
	$n+1 > log_3 20\ 000$	For the inequality
	log 20 000	/log forms
	$n+1 > \frac{\log 20\ 000}{\log 3}$	√log form
	1080	(c. 1.1.5, 0.014F
	n+1 > 9,0145	$\sqrt{n} + 1 > 9,0145$
	W 1 > 3,0110	Value of log
	n > 8,0145	> 0.0145 /
	1	n > 8,0145 ✓
	n = 9	Simplifying
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		✓answer
8.		
8.1	39	✓answer (1)
8.2		$\checkmark a = 1$
	3 9 17 27	
	6 8 10	
	2 2	
	2a = 2	
	a = 1	$\checkmark c = -1$
	c = 3 - 4 = -1	_
	$T_n = n^2 + bn - 1$	√ formula
	$3 = (1)^2 + b(1) - 1$	Torman
	b = 3	$\checkmark b = 3$
	$T_n = n^2 + 3n - 1$	\(\begin{align*} \be
	$I_n - ii + 3ii - 1$	
	OR	
	UK	
	T 1	✓ formula
	$T_n = an^2 + bn + c$	V Ioimula
	2 2	
	2a = 2	/- 1
	a = 1	$\checkmark a = 1$
	3a + b = 6	
	3(1) + b = 6	$\checkmark b = 3$
	b=3	
	a+b+c=3	$\checkmark c = -1$
	1+3+c=3	
	c = -1	
	$T_n = n^2 + 3n - 1$	
	"	
8.3	$n^2 + 3n - 1 > 269$	$\sqrt{n^2 + 3n - 1} > 269$
	$n^2 + 3n - 270 > 0$	
	(n+18)(n-15) > 0	✓ factors
	The first value of n is 16	$\checkmark n = 16$
		$\checkmark n = 10$ \checkmark answer
	The term is $16^2 + 3(16) - 1 = 303$, allower
<u> </u>		

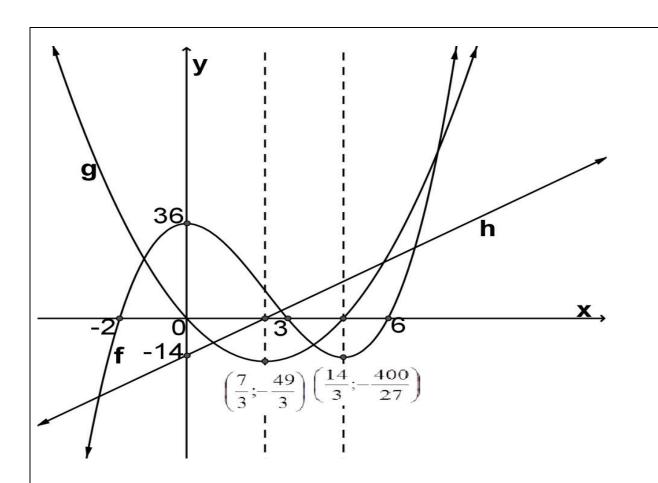

MEMORANDUM: FUNCTIONS AND INVERSES


PART	`1	
1.1		
1.1.1	One-to-many relation	✓answer
		(1)
1.1.2	One-to-one relation	✓answer
		(1)
1.1.3	Many-to-one relation	✓answer
		(1)
1.2		
a)	Not a function, for one input-value there are more than one output values.	✓answer
		✓reason
		(2)
b)	Function, for one input value there is only one output-value.	✓answer
		and
		reason
		(1)
c)	Function, for more than one input value there is one output-value.	✓answer
		and reason
		(1)
1.3	a: Not a function	✓one mark
	b: Function	for each
	c: Not a function	answer
	d: Not a function	
	e: Function	
	f. Function	(0)
	g: Function	(8)
	h: Not a function	
DADT		
PART 2.1	. 	
2.1		✓ one
		mark for
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	all y-
		values
		values
		(1)
	1	(1)

2.2	✓ si	-intercept hape symptote
2.3	f : \checkmark fo	or both x- and y-intercepts
	h: ✓ fo ✓ fo	or x-intercept or asymptote
	v↑ /	
	g/ ₃	
	f	
		h
-6	-5 -4 -3 -2 -1 0 1 2 3	4 5 X
	-2	
	-3	
		(6)
2.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	✓ one mark for all y-values
	See sketch above for h .	✓ one mark for all <i>x</i> -values (2)
2.5		
2.5.1		✓ answer (1)
2.5.2	x = 1	✓ answer (1)

2.6		
2.6.1	Domain: $x \in \mathbb{R}$	✓ answer
	OR	
	$-\infty < x < \infty$	
	OR	
	$x \in (-\infty; \infty)$	
	Range: $y > 0$	✓ answer
	OR	
	$0 < y < \infty$	
	OR	
	$y \in (0; \infty)$	(-)
2.6.2	Domain: $x > 0$	(2) ✓ answer
	OR	
	$-\infty < x < \infty$	
	OR	
	$x \in (-\infty; \infty)$	
	Range: $y \in \mathbb{R}$	✓ answer
	OR	
	$-\infty < y < \infty$	
	OR	
	$y \in (-\infty; \infty)$	
		(2)
2.6.3	The domain of one graph is the range of the other, and vice versa.	✓ answer (1)
2.6.4	Yes, both graphs are functions. They both pass the vertical-line test.	✓ answer
		✓ reason (2)

2.6.5	$y = \log_2 x$		✓ answer
2.6.6	Yes, the line with equation $y = x$ is the line of symmetry.		✓ answer
			✓ reason
265			(2)
2.6.7 PART	Any relevant logical conjecture		(3)
3.1.1	r=		✓answer
3.1.1	$x = 2y^2$ or $y = \pm \sqrt{\frac{x}{2}}$		(1)
3.1.2	Turning point of f is $(0; 0)$		✓ answer
	and the turning point of the inverse is (0; 0)		✓ answer
3.1.3		✓ for f	(2)
		✓ the inverse	e g
1	↓		
j			
	4		
i	f\	ii	
i		i i	i
	2		
	\	+ +-	
i	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
1			X
-4	-3 -2 -1 0 1 2 3 4	15 16	
1			
1			
1	3		
	<u> </u>		(2)
3.1.4	The inverse of f is not a function; it fails the vertical-line test.	✓answer	
		✓ reason	(2)
3.1.5	$f(x) = 2x^2$, domain: $x \ge 0$ OR $x \in [0; \infty)$	✓ one mark for	each
		domain	
	$f(x) = 2x^2$, domain: $x \le 0$ OR $x \in (-\infty; 0]$		(2)
216) Italy density of the second	/ C 0	(2)
3.1.6	a) If the domain of f is $x \le 0$, then the range of the inverse will be $y \le 0$	\checkmark for $x \le 0$ as	$na y \leq 0$
		/ fam > 0	
	b) If the domain of f is $x \ge 0$, then the range of the inverse	\checkmark for $x \ge 0$ as	
	will be $y \ge 0$		(2)


<u>NB</u>: The notation $f^{-1}(x) = \cdots$ is used only for one-to-one relations and may not be used for inverses of many-to-one relations as their inverses are not functions.

3. INVESTIGATION 2

MEMORANDUM: APPLICATIONS OF DIFFERENTIAL CALCULUS

MEMORANDUM: APPLICATIONS OF DIFFERENTIAL C	ALCULUS
$1.f(x) = x^3 - 7x^2 + 36$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
y-intercept = 36	Marks are only awarded on
for x-intercepts:	the graph.
$(x+2)(x^2-9x+18)=0$	8. up
(x+2)(x-3)(x-6) = 0	
x = -2 or x = 3 or x = 6	
\therefore coordinates of the x-intercepts are	
$(-2;0), \qquad (3;0) \ and \ (6;0)$	
For the turning points:	
$f'(x) = 3x^2 - 14x$	
$3x^2 - 14x = 0$	
x(3x-14)=0	
$x = 0 \text{ or } x = \frac{14}{3}$	
3	
f(0) = 36	
TP (0; 36) maximum	
$f\left(\frac{14}{3}\right) = \left(\frac{14}{3}\right)^3 - 7\left(\frac{14}{3}\right)^2 + 36$	
1	
$=-14\frac{22}{27}$	
27	
$\left(\frac{14}{3}; -14\frac{22}{27}\right)$ minimum	
$1.2 f'(x) = 3x^2 - 14x$	1 mark for the equation
$q(x) = 3x^2 - 14x$	$g(x) = 3x^2 - 14\checkmark$
1.3	Marks are only awarded on
$g(x) = 3x^2 - 14x$	the graph.
y-intercept = 0	
For the <i>x</i> -intercepts:	
$3x^2 - 14x = 0$	
x(3x - 14) = 0 $x = 0 \text{ or } x = \frac{14}{3}$	
$x = 0 \text{ or } x = \frac{1}{3}$	
\therefore coordinates of the <i>x</i> -intercepts are	
$(0;0)$ and $\left(\frac{14}{3};0\right)$	
, - ,	
For the turning point: $g'(x) = 6x - 14$	
g(x) = 0x = 14	

OR	$6x - 14 = 0$ $x = \frac{14}{6}$ $x = \frac{7}{3}$ $x = \frac{-b}{2a}$	
	$x = \frac{-(-14)}{2(3)}$	
	$x = \frac{14}{6}$ $x = \frac{7}{3}$	
$g\left(\cdot \right)$	$\left(\frac{7}{3}\right) = 3\left(\frac{7}{3}\right)^2 - 14\left(\frac{7}{3}\right)$ $= \frac{-49}{3}$	
$TP\left(2\frac{1}{3};-1\right)$	$16\frac{1}{3}$	
1.4	$g(x) = 3x^{2} - 14x$ $g'(x) = 6x - 14$ $h(x) = 6x - 14$	1 mark for the equation: $h(x) = 6x - 14\checkmark$
y-intercept = -14 For the x-intercepts:	$6x - 14 = 0$ $x = \frac{7}{3}$	

All values are only marked from the graphs.

For *f*

x-intercepts:
$$x = -2$$
; $x = 3$ or $x = 6$ (1 mark for each x-intercept)

y-intercept:
$$y = 36$$
 (1 mark)

Turning point
$$\left(\frac{14}{3}, -14\frac{22}{27}\right)$$
 (1 mark for each coordinate)

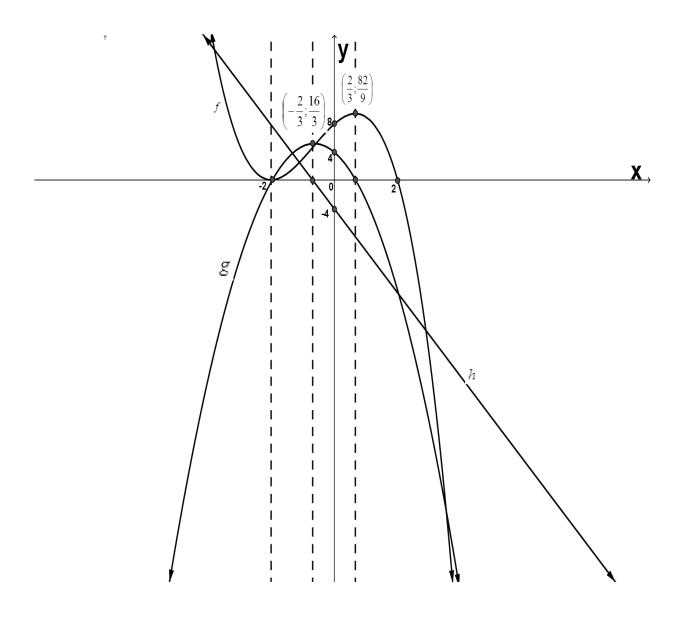
For g

x-intercepts:
$$x = 0$$
 or $x = \frac{14}{3}$ (1 mark for each intercept)

Turning point
$$\left(\frac{7}{3}, -16\frac{1}{3}\right)$$
 (1 mark for both coordinates)

(3)

For *h*


x-intercept:
$$x = \frac{7}{3}$$

y-intercept: $y = -14$

y-intercept:
$$y = -14$$
 (1 mark for each) (2)

1.5. The wintercents of the good dustic function and the w	1 months for the attataments
1.5 The <i>x</i> -intercepts of the quadratic function and the <i>x</i> -coordinate of the turning point of the cubic are equal, i.e.	1 mark for the statement ✓
14	
$x = 0 \text{ and } x = \frac{14}{3}$	
	(1)
1.6 f''(x) = 6x - 14	$f''(x) = 6x - 14\checkmark$
6x - 14 = 0	$6x - 14 = 0\checkmark$
$x = \frac{7}{3}$	A
OR	Answer ✓ (3)
	✓ formula
$\frac{x_1 + x_2}{2} = \frac{0 + \frac{14}{3}}{2}$	151114.4
2 – 2	✓ substitution
7	
$=\frac{7}{3}$	✓ answer
1.7 The axis of symmetry of g , the x-intercept of h and the	✓ answer
point of inflection of f is	
$x = \frac{7}{3}$	
$x = \frac{1}{3}$	(1)
CACEA	
CASE 2	1
$2. f(x) = -x^3 - 2x^2 + 4x + 8$	
2.1 y-intercept = 8	Marks are only asserted on the
for x-intercepts: $(x+2)(x^2-4) = 0$	Marks are only awarded on the
(x+2)(x-4) = 0 (x+2)(x-2)(x+2) = 0	graph.
(x + 2)(x - 2)(x + 2) = 0 x = -2 or x = 2	
$x = -2 \text{ or } x = 2$ $\therefore \text{ coordinates of the } x\text{-intercepts are}$	
(-2; 0) and $(2; 0)$	
(-2,0) and $(2,0)$	
For the turning points:	
$f'(x) = -3x^2 - 4x + 4$	
$-3x^2 - 4x + 4 = 0$	
$3x^2 + 4x - 4 = 0$	
(3x - 2)(x + 2) = 0	
$x = \frac{2}{3}$ or $x = -2$	
$x = \frac{1}{3}$ or $x = -2$	
f(-2) = 0	
f(-2) = 0	
TP $(-2;0)$ minimum	
(2) $(2)^3$ $(2)^2$ (2)	
$f\left(\frac{2}{3}\right) = -\left(\frac{2}{3}\right) - 2\left(\frac{2}{3}\right) + 4\left(\frac{2}{3}\right) + 8$	
$f\left(\frac{2}{3}\right) = -\left(\frac{2}{3}\right)^3 - 2\left(\frac{2}{3}\right)^2 + 4\left(\frac{2}{3}\right) + 8$ $= 9\frac{1}{9}$	
$=9\frac{1}{\alpha}$	
7	
$TP\left(\frac{2}{3}; 9\frac{1}{9}\right)$ maximum	
(3, 5)	

$2.2 \ f'(x) = -3x^2 - 4x + 4$	1 mark for equation of
$g(x) = -3x^2 - 4x + 4$	$g(x) = -3x^2 - 4x + 4 \checkmark$
2.3 y-intercept = 4 x-intercept $-3x^2 - 4x + 4 = 0$	Marks are only awarded on the graph.
$(3x - 2)(x + 2) = 0$ $x = -2 \text{ or } x = \frac{2}{3}$	
$x = -2 \text{of} x = \frac{\pi}{3}$ TP $g'(x) = -6x - 4$	
-6x - 4 = 0 -4	
$x = \frac{-4}{6}$ $x = \frac{-2}{3}$	
$g\left(\frac{-2}{3}\right) = -3\left(\frac{-2}{3}\right)^2 - 4\left(\frac{-2}{3}\right) + 4$	
$g\left(\frac{-2}{3}\right) = 5\frac{1}{3}$	
$ \begin{array}{c} \text{TP} \\ \mathbf{OR} \end{array} $	
$x = \frac{-b}{2a}$	
$x = \frac{-(-4)}{2(-3)}$	
$x = \frac{-2}{3}$	
$g\left(\frac{-2}{3}\right) = -3\left(\frac{-2}{3}\right)^2 - 4\left(\frac{-2}{3}\right) + 4$	
TP $\left(\frac{-2}{3}; \frac{16}{3}\right)$ 2.4 $f''(x) = -6x - 4$	
f''(x) = -6x - 4 $h(x) = -6x - 4$ $y-intercept = -4$	1 mark only for equation $h(x) = -6x - 4\checkmark$ Other marks are awarded on the
$x-intercept -6x - 4 = 0$ $x = \frac{-2}{3}$	graph.
2.5 The <i>x</i> -intercepts of the quadratic function and the <i>x</i> -coordinate of the turning points of the cubic are equal, i.e.	1 mark for the statement ✓
$x = \frac{2}{3} \text{ and } x = -2$	(1)

f''(x) = -6x - 4 $-6x - 4 = 0$	$f''(x) = -6x - 4 \checkmark$ $-6x - 4 = 0 \checkmark$	
$x = \frac{-2}{3}$	$f''(x) = -6x - 4 \checkmark$ $-6x - 4 = 0 \checkmark$ $x = \frac{-2}{3} \checkmark$	(2)
O.D.	()	(3)
OR $\frac{x_1 + x_2}{2} = \frac{-2 + \frac{2}{3}}{2}$	✓ formula ✓ substitution ✓ answer	
$=\frac{-2}{3}$		
2.7 The axis of symmetry of g, the x-intercept of h and the x-coordinate of the point of inflection of f are $x = \frac{-2}{3}$	✓ answer	
3		(1)
2. The point of inflaction of the cubic function is the same as	✓ ✓ conclusion	(1)
3. The point of inflection of the cubic function is the same as the axis of symmetry of the graph of the first derivative and	Conclusion	
also the <i>x</i> -intercept of the graph of the second derivative		(2)
also the x intercept of the graph of the second derivative		(2)
4.		
4.1.1 for increasing:	x < 2	
x < 2 or $x > 4$	$\begin{vmatrix} x < 2 \checkmark \\ x > 4 \checkmark \end{vmatrix}$	
<i>x</i>		
		(2)
4.1.2 for decreasing: $2 < x < 4$	For both values of $x \checkmark$	` /
	For correct inequality ✓	
		(2)
4.2 The <i>x</i> -values of the turning points	<i>x</i> = 2 ✓	
x = 2	x = 4	
x = 4		(2)
4.3 $x = 2$ is the relative maximum since for f increasing	$x = 2$ maximum \checkmark	
$\frac{4.3}{x} = 2$ is the relative maximum since for j increasing $x < 2$	$x = 2$ maximum \checkmark	
x = 4 is the relative minimum since for f increasing		
x > 4		(2)
	•	

All values are only marked from the graphs.

2.1 For *f*

Each x-intercept 1 mark x = 2 and x = -2 (2 marks)

y-intercept 1 mark y = 8

For the turning point (-2; 0) 1 mark \checkmark

For the turning point (0, 67; 9,11) or $(\frac{2}{3}; 9\frac{1}{9})$ 1 mark for x-coordinate and

1 mark for y-coordinate $\checkmark \checkmark$ (2 marks)

Shape of the graph 1 mark \checkmark (7)

2.3 For *g*

x-intercepts: x = -2 \checkmark and $x = \frac{2}{3}$ \checkmark

(1 mark for each)

y-intercept: y = 4

(1 mark)

Turning point $\left(\frac{-2}{3}, 5\frac{1}{3}\right)$

(1 mark both coordinates)

(4)

2.4 For *h*

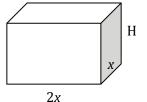
x-intercept: $x = \frac{-2}{3}$

(1 mark)

y-intercept: y = -4

(1 mark)

(2)


4. PROJECT TOTAL: 50

Applications of differential calculus

RUBRIC

CRITERIA	MAXIMUM	MARK ALLOCATION		
	MARK	A	В	C
Correct mathematical formulae	3 x 3			
Correct calculations:				
Measurements of bases	4 x 3			
Height of the containers	2 x 3			
Logical reasoning and presentation	3 x 3			
Submitting on time	2			
Conclusion of the least material needed	1 x 3			
Final, further comparison	1 x 3			
Sketches	2 x 3			
TOTAL	50			

RECTANGULAR BASE

1 litre = $1\ 000\ \text{cm}^3$

Volume: $l \times b \times H$: 2x(x)(H) = 1 litre

$$H = \frac{1000}{2x^2} = \frac{500}{x^2} \text{ cm}$$

Surface area: $2(2x \times x) + 2(x \times H) + 2(2x \times H)$ $= 4x^{2} + 2x \times \frac{500}{x^{2}} + 4x \times \frac{500}{x^{2}}$ $= 4x^{2} + \frac{1000}{x} + \frac{2000}{x}$ $= 4x^{2} + 3000x^{-1}$

For minimum surface area: S'(x) = 0

$$8x - 3000x^{-2} = 0$$
$$x^3 = \frac{3000}{8}$$

$$x = \sqrt[3]{\frac{3000}{8}} = 7,2112 \dots cm$$

 $H = \frac{500}{x^2} = 9,61499 \dots cm$

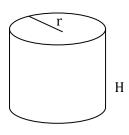
Min surface area: $4(7,2112...)^2 + 3000(9,61499...)^{-1}$ $= 624.0251469 cm^2$

1 litre = $1\ 000\ cm^3$ formula: volume H in terms of x

formula: surface area Substitution of H

$$S'(x) = 0$$

solving for $x = 7,2112 \dots$ cm


minimum material:

substitute x = 7,2112... to

calculate H = 9.61499...

Answer

CIRCULAR BASE

1 litre = $1\ 000\ \text{cm}^3$

Volume: $\pi r^2 \times H := 1$ litre

$$H = \frac{1000}{\pi r^2} \text{ cm}^3$$

Surface area:
$$2\pi r^2 + 2\pi r \times H$$

= $2\pi r^2 + 2\pi r \times \frac{1000}{\pi r^2}$
= $2\pi r^2 + 2000r^{-1}$

Min area: S'(r) = 0

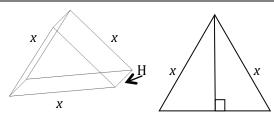
$$4\pi r - 2000r^{-2} = 0$$

$$r^3 = \frac{2000}{4\pi}$$

$$r = \sqrt[3]{\frac{2000}{4\pi}} = 5,419 \dots cm$$

formula: volume formula: Surface area Substitution of H S'(r) = 0solving for r = 5,419 cm minimum material: substitute r = 5.419 and H = 10,8385...cm

Answer


$$H = \frac{1000}{\pi r^2} = 10,8385 \dots cm^3$$

Min surface area:

$$= 2\pi (5,419...)^2 + 2\pi (5,419...) \times 10,8385$$

 $= 553,58 \dots cm^2$

C

$$h = \sqrt{x^2 - \left(\frac{x}{2}\right)^2}$$

$$h = \frac{\sqrt{4x^2 - x^2}}{\frac{2}{2}}$$

$$h = \frac{\sqrt{3}x}{2}$$

1 litre = $1\ 000\ \text{cm}^3$

Volume: $b \times h \times H$: $\frac{1}{2}x(h)(H) = 1$ litre

 $\frac{1}{2}x\left(\frac{\sqrt{3}x}{2}\right)(H) = 1000$ $H = \frac{4000}{\sqrt{3}x^2} = cm$

Surface area: $2\left(\frac{1}{2}bh\right) + 3x \times H$ $= x \left(\frac{\sqrt{3}x}{2} \right) + 3x \times \frac{4000}{\sqrt{3}x^2}$

$$= x^2 \left(\frac{\sqrt{3}}{2}\right) + \frac{12000x^{-1}}{\sqrt{3}}$$

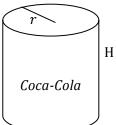
Min area: S'(x) = 0

 $2x\left(\frac{\sqrt{3}}{2}\right) - \frac{12000x^{-2}}{\sqrt{3}} = 0$ $x^3 = \frac{12000}{\sqrt{3} \times \sqrt{3}} = 4000$

 $x = \sqrt[3]{4000} = 15,874 \dots \text{cm}$

1 litre = $1\ 000\ \text{cm}^3$ formula: volume H in terms of xformula: Surface area Substitution of H S'(x) = 0

solving for x = cmminimum material: substitute *x* calculate H


Answer

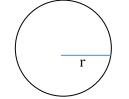
11 _	4000	4000	-016496 am
$\Pi - \frac{1}{\sqrt{3}x^2} =$		$\sqrt{3}(15,874)^2$	= 9,16486cm

Min surface area:

=
$$(15,874...)^2 \left(\frac{\sqrt{3}}{2}\right) + 3(15,874....)(9,16486....)$$

= $654,674...cm^2$

Conclusion: The CIRCULAR BASE requires the least material to hold 1 litre of liquid.



FURTHER COMPARISON

The Coke company uses this shape because it needs the least material in manufacturing and is therefore the most economical of the three.

The sphere:

Volume:
$$\frac{4}{3}\pi r^3 = 1000 \ cm^3$$

$$r = \sqrt[3]{\left(\frac{3000}{4\pi}\right)} = 6,2035...$$

Surface area

=
$$4\pi r^2$$

= $4\pi (6,2035...)^2$
= $483,5975862 cm^2$

This shape requires by far the least material, but would be totally impractical. It would roll around on a flat surface. However, one could design a foot base for the can to stand on, which would then increase the cost of manufacturing.

