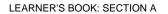


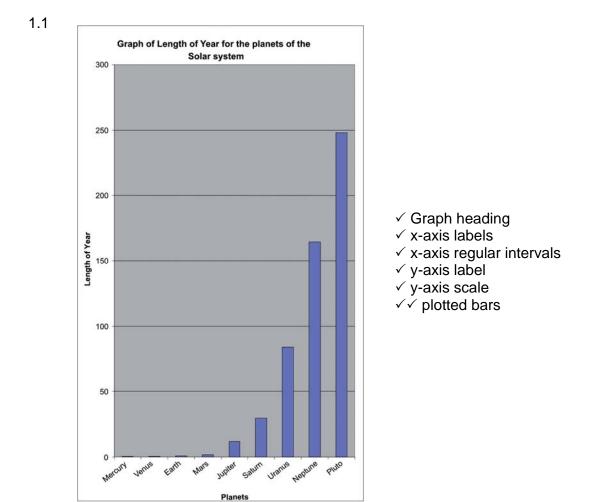
GRADE 9 2005

COMMON TASK FOR ASSESSMENT (CTA)

NATURAL SCIENCES

MEMORANDUM


SECTION B


Time : 2 hours

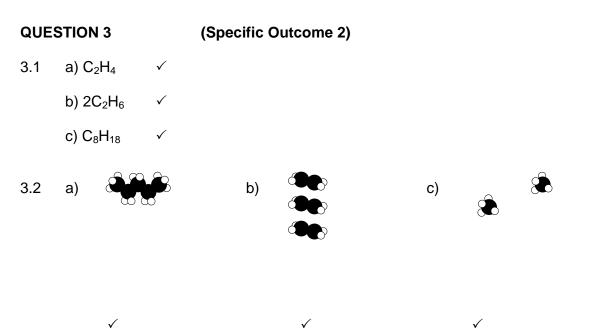
Marks: 80

QUESTION 1

(Specific Outcome 1)

- 1.2 Pluto √
- 1.3 Mercury; Venus ✓✓
- 1.4 The time taken to travel around the Sun $\checkmark \checkmark$
- 1.5 The values are compared to the value of that for planet Earth thus they are ratio rather than an actual value, i.e. Pluto has a year that is 248 times longer than that of Earth. $\sqrt{\sqrt{}}$

(14 marks)


QUESTION 2 (Specific Outcomes 2 and 5)

- 2.1 Earth is the right distance from the right sort of star \checkmark
- 2.2 Molten core provides electromagnetic field for cosmic ray protection ✓
 - causes irregular surface to prevent submergence by oceans ✓
 provides the atmosphere. ✓

Contains the right elements in the right proportions – specifically water; oxygen and carbon. \checkmark

- 2.3 The moon stabilises the spinning of the Earth so that it spins at the right speed and angle. \checkmark
- 2.4 Venus is too close to the Sun, so it is too hot. ✓ Venus has a poisonous atmosphere without any oxygen. ✓
- 2.5 Jupiter is too far from the Sun, so it is too cold. ✓ Jupiter has an atmosphere of hydrogen and helium, with no oxygen. ✓ or Jupiter is a gaseous planet without an established solid surface.

(10 marks)

NOTE: the number of each type of atom is important, not the arrangement of atoms in a molecule.

3.3 $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$ \checkmark formula \checkmark formula \checkmark formula \checkmark formula \checkmark \checkmark balancing

(12 marks)

QUESTION 4 (Specific Outcomes 1 and 5 and 8)

- 4.1 The amount of carbon dioxide gas in the atmosphere. $\checkmark\checkmark$
- 4.2 The health/movement of the mouse. $\sqrt{\sqrt{}}$
- 4.3 The movement of the mouse. \checkmark
- 4.4 The amount of burning/CO₂ production per time unit. \checkmark The time periods of measuring. \checkmark
- 4.5 No. \checkmark If it is possible to control the amount of burning, the CO₂ should actually be measured rather than the time. The method of measurement of the health of the mouse using its movement is not precise. $\checkmark\checkmark$
- 4.6 E.g. No. The mouse will be asphyxiated and die during the experiment. A mouse is a mammal with a sophisticated nervous system and will undergo suffering. The findings are not essential as similar previous experimental results exist.
 ✓ clear choice made ✓ ✓ relevant and reasonable justification made

(13 marks)

QUESTION 5 (Specific Outcomes 1 and 4 and 5 and 9)

- 5.1 Nigeria √
- 5.2 Australia has a smaller total carbon footprint than South Africa but a much larger per capita footprint ✓. Australia is of greater concern ✓ as the percentage increase is so much greater than that of South Africa.
- 5.3 France has a greater total carbon footprint than South Africa \checkmark but a smaller per capita footprint. South Africa is of greater concern \checkmark as the percentage increase is greater than that of France.
- 5.4 South Africa could be called a First World country \checkmark . The per capita CO₂ emission is 8,1 metric tons per person which is similar to that of the First World countries and much higher than the Third World countries \checkmark .

5.5	a)	e.g. for a calculate carbon footprint of 218,6 kg:			
		Annual emission (tons)	=	Monthly emission (kg) X 12 months	
				1000	
			= <u>218,6 X 12</u>		
				1000	
			=	2,62 metric tons $CO_2 \checkmark$	

- b) My carbon footprint is much less than that of the average South African. \checkmark
- c) This is because domestic production is only 2% of the total production. \checkmark Most CO₂ produced in South Africa is due to industries.

(10 marks)

QUESTION 6 (Specific Outcomes 4 and 5 and 9)

- 6.1 a) Travelling could be more sociable more people to talk to while travelling. $\sqrt{\sqrt{}}$
 - b) Public transport could be more dangerous and could expose people to more crime. $\checkmark\checkmark$
 - c) Fewer cars on the road would reduce the CO_2 emission and air pollution.
 - d) If it is not well patronised and many people continue to travel as they do now, it could produce more CO_2 and air pollution per commuter. $\checkmark\checkmark$
 - e) Yes, a city with as many commuters as Johannesburg needs a mass transit system to reduce CO_2 emission from transport. $\sqrt{\checkmark}$
- 6.2 a) The health of the planet is seriously threatened by the US rejection of the Kyoto Accord. \checkmark This is because the USA is a highly industrialised, consumer-driven and populous nation \checkmark and is therefore a major producer of CO₂ in the atmosphere \checkmark .
 - b) \checkmark clear choice/view expressed \checkmark relevant and reasonable justification given

(15 marks)

QUESTION 7 (Specific Outcomes 2 and 3 and 4)

7.1 No. of kg of CO_2 emitted per month = No. of litres of petrol x Emission Factor

= 100ℓ x 2,35 ✓

= 235 kg √

7.2 Average no. of kg of CO₂ emitted **per learner** per month = $\frac{235 \text{ kg}}{24 \text{ learners }}$

= 9,8 kg √

7.3 Yes ✓. The average transport carbon footprint for a learner travelling by car is 90 kg of CO₂ per month. The average transport carbon footprint for a learner travelling by bus is less than 10 kg of CO₂ per month. Thus the reduction in carbon footprint through using the bus is very significant. ✓

(6 marks)