ELECTRICAL TECHNOLOGY: DIGITAL

EXEMPLAR 2018

MARKS: 200

TIME: 3 hours

This question paper consists of 13 pages, a 1-page formula sheet and an answer sheet of 3 pages.
INSTRUCTIONS AND INFORMATION

1. This question paper consists of FIVE questions.

2. Answer ALL the questions.

3. Sketches and diagrams must be large, neat and fully labelled.

4. Show ALL calculations and round off answers correctly to TWO decimal places.

5. Number the answers correctly according to the numbering system used in this question paper.

6. You may use a non-programmable calculator.

7. Show the units for ALL answers and calculations.

8. A formula sheet is attached at the end of this question paper.

9. Write neatly and legibly.

10. Use the ADDENDUM provided as per instruction.
QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY (GENERIC)

1.1 Define the term *workplace* with reference to the Occupational Health and Safety Act, 1993 (Act 85 of 1993) (2)

1.2 Name TWO general duties for employees at the workplace. (2)

1.3 Explain why ‘insufficient ventilation’ is an unsafe condition in the workshop. (2)

1.4 State TWO functions of a health and safety representative. (2)

1.5 Explain *quantitative risk analysis*. (2)

QUESTION 2: SWITCHING CIRCUITS

2.1 Draw the output signal of an astable multivibrator. (3)

2.2 Define the term *bi-stable multivibrator*. (3)

2.3 FIGURE 2.3 below shows the input signals of a bi-stable multivibrator. Draw the output on the addendum provided. (3)

![FIGURE 2.3: INPUT SIGNALS OF A BI-STABLE MULTIVIBRATOR](image)

FIGURE 2.3: INPUT SIGNALS OF A BI-STABLE MULTIVIBRATOR
2.4 Refer to FIGURE 2.4 below and answer the questions that follow.

FIGURE 2.4: MONO-STABLE MULTIVIBRATOR

- **2.4.1** State ONE application of the mono-stable multivibrator. (1)
- **2.4.2** Explain why resistor R_1 is necessary in the circuit. (3)
- **2.4.3** Explain how an increase in the value of capacitor C_1 will affect the circuit. (2)
- **2.4.4** Describe what will happen in the circuit when switch S_1 is pressed. (5)

2.5 State TWO applications other than a temperature sensitive switch of a Schmitt trigger. (2)
2.6 Explain the basic operation of a Schmitt trigger with reference to FIGURE 2.6 below.

![FIGURE 2.6: INPUT AND OUTPUT OF AN INVERTING SCHMITT TRIGGER](image)

2.7 Draw a fully labelled circuit diagram of a 741 op amp connected as an inverting Schmitt trigger.

2.8 FIGURE 2.8 below shows a 741 op amp as a comparator. Answer the questions that follow.

![FIGURE 2.8: COMPARATOR](image)

2.8.1 State the function of R_2 in the circuit.

2.8.2 Describe the operation of the comparator.

2.8.3 State how the circuit can be modified to adjust the reference voltage.
2.9 Refer to FIGURE 2.9 below and answer the questions that follow:

![Amplifier Diagram]

FIGURE 2.9: AMPLIFIER

2.9.1 Identify the amplifier in FIGURE 2.9. (2)
2.9.2 Name the type of feedback provided by \(R_F \). (1)
2.9.3 Explain how the gain of this amplifier is determined. (3)
2.9.4 Calculate the output voltage of the amplifier. (3)

FIGURE 2.11: RC DIFFERENTIATOR

2.11.1 Draw the output signal with reference to the input signal on the ADDENDUM provided. (3)
2.11.2 Explain how a long time constant will influence the output signal. (2)
2.12 Refer to FIGURE 2.12 below and answer the questions that follow.

FIGURE 2.12: OP AMP

2.12.1 Identify the amplifier.

2.12.2 Draw the output signal with reference to the input in FIGURE 2.12 on the addendum provided.

2.12.3 Explain how a higher input frequency will affect the output of an integrator.
QUESTION 3: SEMICONDUCTOR DEVICES (SPECIFIC)

3.1 Refer to FIGURE 3.1 below and answer the questions that follow.

3.1.1 Label the inputs A and B. (2)
3.1.2 Name THREE characteristics of an op amp. (3)
3.1.3 State ONE operating feature of the 741 op amp as an amplifier, with reference to its gain. (1)
3.1.4 Explain why an op amp uses a dual voltage supply. (2)

3.2 Refer to FIGURE 3.2 below and answer the questions that follow.

3.2.1 Calculate the gain of the op amp. (3)
3.2.2 Calculate the output voltage if a 0.55 V signal is applied to the input. (3)
3.2.3 Describe what will happen to the output voltage if the value of the feedback resistor is increased to 20 kΩ. (2)

3.3 State TWO uses of the 555 IC. (2)
3.4 FIGURE 3.4 below shows the 555 IC. Explain the function of pin 6.

![Diagram of 555 IC showing pin configuration](image)

FIGURE 3.4: 555 IC
QUESTION 4: DIGITAL AND SEQUENTIAL DEVICES (SPECIFIC)

4.1 Name ONE type of seven-segment display device that is commonly available, besides the LED seven-segment display. (1)

4.2 Explain the difference between a sinking and a sourcing output with reference to the LED seven-segment display. (4)

4.3 Explain the function of a decoder. (2)

4.4 TABLE 4.4 represents the truth table of a full adder.

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 4.4

4.4.1 Extract the Boolean expression from the truth table for the Carry (Co). (1)

4.4.2 Simplify the Boolean expression in QUESTION 4.4.1 by using Boolean algebra. (4)

4.5 Draw the circuit diagram of the full adder using TWO half adders and an OR gate. (6)

4.6 Explain the difference between combinational logic circuits and sequential logic circuits as used in memory elements. (4)
4.7 FIGURE 4.7 below represents an RS latch with the different inputs in the truth table. Complete the truth table for this latch on the ANSWER SHEET provided.

![RS Latch Diagram]

FIGURE 4.7

<table>
<thead>
<tr>
<th>Mode of operation</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Illegal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Set</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reset</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hold</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 4.7

4.8 Name TWO types of counters that are commonly used in digital electronics.

4.9 With reference to a THREE-stage asynchronous ripple counter:

4.9.1 Draw a labelled circuit using JK flip-flops

4.9.2 Draw the truth table

4.10 Name THREE types of registers that are used in digital electronics circuits.

4.11 Draw a neatly labelled sketch of a 4-bit serial-in: serial-out shift register using D-type flip-flops and show ALL the inputs and outputs.
QUESTION 5: MICROCONTROLLERS (SPECIFIC)

5.1 State TWO uses of a microcontroller in household appliances. (2)

5.2 State the main disadvantage of a microcontroller. (2)

5.3 Describe the difference between a microcontroller and a microprocessor. (3)

5.4 Explain the difference between discreet logic and integrated logic. (4)

5.5 5.5.1 Draw a block diagram of a microcontroller (4)

5.5.2 State the function of the Central Processing Unit (CPU) as used in microcontrollers (2)

5.6 State THREE types of special purpose registers that are used in the (CPU). (3)

5.7 With reference to the CPU:

5.7.1 Explain the term clock speed (1)

5.7.2 Determine the effect that an increase in clock speed has on the CPU (1)

5.8 Describe the function of an Analogue to Digital Converter (ADC) as used in microcontrollers. (2)

5.9 Illustrate the types of communication protocols using block diagrams with reference to the following:

5.9.1 Simplex (2)

5.9.2 Duplex (2)

5.9.3 half duplex (2)
5.10 Complete TABLE 5.10 in the addendum by comparing the characteristics of RS-232 with that of a RS-485 communication protocol.

<table>
<thead>
<tr>
<th></th>
<th>RS-232</th>
<th>RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum cable length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum data rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical logic levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode of operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5.10

5.11 With reference to software of microcontrollers define the following terms:

5.11.1 Algorithm

5.11.2 Program

5.11.3 Flow diagram

5.12 Draw a flowchart of a mono-stable device that has only one stable state. The program switches the output on and off every 5 seconds and then goes back to its original state.

TOTAL 200
SWITCHING CIRCUITS

1. Gain $A_V = \frac{V_{out}}{V_{in}} = -\left(\frac{R_f}{R_{in}}\right)$ inverting operational amplifier

2. Gain $A_V = \frac{V_{out}}{V_{in}} = 1 + \frac{R_f}{R_{in}}$ non-inverting operational amplifier

3. $V_{OUT} = V_{IN} \times \left(-\frac{R_f}{R_{IN}}\right)$ inverting operational amplifier

4. $V_{OUT} = -(V_1 + V_2 + V_3)$ summing op amp circuit

5. $f_r = \frac{1}{2\pi\sqrt{LC}}$ Hartley oscillator

6. $f = \frac{1}{2\pi\sqrt{6RC}}$ RC phaseshift oscillator
QUESTION 2: SWITCHING AND CONTROL CIRCUITS

2.1

2.3

FIGURE 2.3: INPUT SIGNALS OF A BI-STABLE MULTIVIBRATOR
QUESTION 4: DIGITAL AND SEQUENTIAL DEVICES

4.7

<table>
<thead>
<tr>
<th>Mode of operation</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Illegal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Set</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reset</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hold</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 4.7
4.9 4.9.2

<table>
<thead>
<tr>
<th>CLOCK PULSES</th>
<th>BINARY COUNT SEQUENCE</th>
<th>DECIMAL COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4.9

QUESTION 5: MICROCONTROLLERS

<table>
<thead>
<tr>
<th></th>
<th>RS-232</th>
<th>RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum cable length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum data rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical logic levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode of operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5.10