NATIONAL CERTIFICATES (VOCATIONAL)

ASSESSMENT GUIDELINES

CIVIL AND CONSTRUCTION TECHNOLOGY
NQF Level 4

September 2007
CIVIL AND CONSTRUCTION TECHNOLOGY – LEVEL 4

CONTENTS

SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 Assessment in the National Certificates (Vocational)
2 Assessment framework for vocational qualifications
 2.1 Internal continuous assessment (ICASS)
 2.2 External summative assessment (ESASS)
3 Moderation of assessment
 3.1 Internal moderation
 3.2 External moderation
4 Period of validity of internal continuous assessment (ICASS)
5 Assessor requirements
6 Types of assessment
 6.1 Baseline assessment
 6.2 Diagnostic assessment
 6.3 Formative assessment
 6.4 Summative assessment
7 Planning assessment
 7.1 Collecting evidence
 7.2 Recording
 7.3 Reporting
8 Methods of assessment
9 Instruments and tools for collecting evidence
10 Tools for assessing student performance
11 Selecting and/or designing recording and reporting systems
12 Competence descriptions
13 Strategies for collecting evidence
 13.1 Record sheets
 13.2 Checklists

SECTION C: ASSESSMENT IN CIVIL AND CONSTRUCTION TECHNOLOGY

1 Schedule of assessment
2 Recording and reporting
3 Internal assessment of Subject Outcomes in Civil & Construction Technology - Level 4
4 Specifications for external assessment in Civil and Construction Technology - Level 4
 4.1 Integrated summative assessment task (ISAT)
 4.2 National Examination
SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

This document provides the lecturer with guidelines to develop and implement a coherent, integrated assessment system for Civil and Construction Technology in the National Certificates (Vocational). It must be read with the National Policy Regarding Further Education and Training Programmes: Approval of the Documents, Policy for the National Certificates (Vocational) Qualifications at Levels 2 to 4 on the National Qualifications Framework (NQF). This assessment guideline will be used for National Qualifications Framework Levels 2-4.

This document explains the requirements for the internal and external subject assessment. The lecturer must use this document with the Subject Guidelines: Civil and Construction Technology to prepare for and deliver Civil and Construction Technology. Lecturers should use a variety of resources and apply a range of assessment skills in the setting, marking and recording of assessment tasks.

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

Assessment in the National Certificates (Vocational) is underpinned by the objectives of the National Qualifications Framework (NQF). These objectives are to:

- Create an integrated national framework for learning achievements.
- Facilitate access to and progression within education, training and career paths.
- Enhance the quality of education and training.
- Redress unfair discrimination and past imbalances and thereby accelerate employment opportunities.
- Contribute to the holistic development of the student by addressing:
 - social adjustment and responsibility;
 - moral accountability and ethical work orientation;
 - economic participation; and
 - nation-building.

The principles that drive these objectives are:

- **Integration**
 To adopt a unified approach to education and training that will strengthen the human resources development capacity of the nation.

- **Relevance**
 To be dynamic and responsive to national development needs.

- **Credibility**
 To demonstrate national and international value and recognition of qualification and acquired competencies and skills.

- **Coherence**
 To work within a consistent framework of principles and certification.

- **Flexibility**
 To allow for creativity and resourcefulness when achieving Learning Outcomes, to cater for different learning styles and use a range of assessment methods, instruments and techniques.

- **Participation**
 To enable stakeholders to participate in setting standards and co-ordinating the achievement of the qualification.

- **Access**
 To address barriers to learning at each level to facilitate students’ progress.
• **Progression**
To ensure that the qualification framework permits individuals to move through the levels of the national qualification via different, appropriate combinations of the components of the delivery system.

• **Portability**
To enable students to transfer credits of qualifications from one learning institution and/or employer to another institution or employer.

• **Articulation**
To allow for vertical and horizontal mobility in the education system when accredited pre-requisites have been successfully completed.

• **Recognition of Prior Learning**
To grant credits for a unit of learning following an assessment or if a student possesses the capabilities specified in the outcomes statement.

• **Validity of assessments**
To ensure assessment covers a broad range of knowledge, skills, values and attitudes (SKVAs) needed to demonstrate applied competency. This is achieved through:
 - clearly stating the outcome to be assessed;
 - selecting the appropriate or suitable evidence;
 - matching the evidence with a compatible or appropriate method of assessment; and
 - selecting and constructing an instrument(s) of assessment.

• **Reliability**
To assure assessment practices are consistent so that the same result or judgment is arrived at if the assessment is replicated in the same context. This demands consistency in the interpretation of evidence; therefore, careful monitoring of assessment is vital.

• **Fairness and transparency**
To verify that no assessment process or method(s) hinders or unfairly advantages any student. The following could constitute unfairness in assessment:
 - Inequality of opportunities, resources or teaching and learning approaches
 - Bias based on ethnicity, race, gender, age, disability or social class
 - Lack of clarity regarding Learning Outcome being assessed
 - Comparison of students’ work with other students, based on learning styles and language

• **Practicability and cost-effectiveness**
To integrate assessment practices within an outcomes-based education and training system and strive for cost and time-effective assessment.

2 ASSESSMENT FRAMEWORK FOR VOCATIONAL QUALIFICATIONS
The assessment structure for the National Certificates (Vocational) qualification is as follows:

2.1 **Internal continuous assessment (ICASS)**
Knowledge, skills values, and attitudes (SKVAs) are assessed throughout the year using assessment instruments such as projects, tests, assignments, investigations, role-play and case studies. The internal continuous assessment (ICASS) practical component is undertaken in a real workplace, a workshop or a “Structured Environment”. This component is moderated internally and quality assured externally by Umalusi. All internal continuous assessment (ICASS) evidence is kept in a Portfolio of Evidence (PoE) and must be readily available for monitoring, moderation and verification purposes.

2.2 **External summative assessment (ESASS)**
The external summative assessment is either a single or a set of written papers set to the requirements of the Subject Learning Outcomes. The Department of Education administers the theoretical component according to relevant assessment policies.
A compulsory component of external summative assessment (ESASS) is the integrated summative assessment task (ISAT). This assessment task draws on the students’ cumulative learning throughout the year. The task requires integrated application of competence and is executed under strict assessment conditions. The task should take place in a simulated or “Structured Environment”. The integrated summative assessment task (ISAT) is the most significant test of students’ ability to apply acquired knowledge.

The integrated assessment approach allows students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

External summative assessments will be conducted annually between October and December, with provision made for supplementary sittings.

3 MODERATION OF ASSESSMENT

3.1 Internal moderation
Assessment must be moderated according to the internal moderation policy of the Further Education and Training (FET) college. Internal college moderation is a continuous process. The moderator’s involvement starts with the planning of assessment methods and instruments and follows with continuous collaboration with and support to the assessors. Internal moderation creates common understanding of Assessment Standards and maintains these across vocational programmes.

3.2 External moderation
External moderation is conducted by the Department of Education, Umalusi and, where relevant, an Education and Training Quality Assurance (ETQA) body according to South African Qualifications Authority (SAQA) and Umalusi standards and requirements.

The external moderator:
- monitors and evaluates the standard of all summative assessments;
- maintains standards by exercising appropriate influence and control over assessors;
- ensures proper procedures are followed;
- ensures summative integrated assessments are correctly administered;
- observes a minimum sample of ten (10) to twenty-five (25) percent of summative assessments;
- gives written feedback to the relevant quality assuror; and
- moderates in case of a dispute between an assessor and a student.

Policy on inclusive education requires that assessment procedures be customised for students who experience barriers to learning, and supported to enable these students to achieve their maximum potential.

4 PERIOD OF VALIDITY OF INTERNAL CONTINUOUS ASSESSMENT (ICASS)

The period of validity of the internal continuous assessment mark is determined by the National Policy on the Conduct, Administration and Management of the Assessment of the National Certificates (Vocational).

The internal continuous assessment (ICASS) must be re-submitted with each examination enrolment for which it constitutes a component.

5 ASSESSOR REQUIREMENTS

Assessors must be subject specialists and should ideally be declared competent against the standards set by the ETDP SETA. If the lecturer conducting the assessments has not been declared a competent assessor, an assessor who has been declared competent may be appointed to oversee the assessment process to ensure the quality and integrity of assessments.

6 TYPES OF ASSESSMENT

Assessment benefits the student and the lecturer. It informs students about their progress and helps lecturers make informed decisions at different stages of the learning process. Depending on the intended purpose, different types of assessment can be used.
6.1 Baseline assessment
At the beginning of a level or learning experience, baseline assessment establishes the knowledge, skills, values and attitudes (SKVAs) that students bring to the classroom. This knowledge assists lecturers to plan learning programmes and learning activities.

6.2 Diagnostic assessment
This assessment diagnoses the nature and causes of learning barriers experienced by specific students. It is followed by guidance, appropriate support and intervention strategies. This type of assessment is useful to make referrals for students requiring specialist help.

6.3 Formative assessment
This assessment monitors and supports teaching and learning. It determines student strengths and weaknesses and provides feedback on progress. It determines if a student is ready for summative assessment.

6.4 Summative assessment
This type of assessment gives an overall picture of student progress at a given time. It determines whether the student is sufficiently competent to progress to the next level.

7 PLANNING ASSESSMENT
An assessment plan should cover three main processes:

7.1 Collecting evidence
The assessment plan indicates which Subject Outcomes and Assessment Standards will be assessed, what assessment method or activity will be used and when this assessment will be conducted.

7.2 Recording
Recording refers to the assessment instruments or tools with which the assessment will be captured or recorded. Therefore, appropriate assessment instruments must be developed or adapted.

7.3 Reporting
All the evidence is put together in a report to deliver a decision for the subject.

8 METHODS OF ASSESSMENT
Methods of assessment refer to who carries out the assessment and includes lecturer assessment, self-assessment, peer assessment and group assessment.

LECTURER ASSESSMENT	The lecturer assesses students’ performance against given criteria in different contexts, such as individual work, group work, etc.
SELF-ASSESSMENT	Students assess their own performance against given criteria in different contexts, such as individual work, group work, etc.
PEER ASSESSMENT	Students assess another student’s or group of students’ performance against given criteria in different contexts, such as individual work, group work, etc.
GROUP ASSESSMENT	Students assess the individual performance of other students within a group or the overall performance of a group of students against given criteria.

9 INSTRUMENTS AND TOOLS FOR COLLECTING EVIDENCE
All evidence collected for assessment purposes is kept or recorded in the student’s PoE.

The following table summarises a variety of methods and instruments for collecting evidence. A method and instrument is chosen to give students ample opportunity to demonstrate that the Subject Outcome has been attained. This will only be possible if the chosen methods and instruments are appropriate for the target group and the Specific Outcome being assessed.
METHODS FOR COLLECTING EVIDENCE

<table>
<thead>
<tr>
<th>Assessment instruments</th>
<th>Task-based (Structured)</th>
<th>Test-based (More structured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation-based (Less structured)</td>
<td>Assignments or tasks</td>
<td>Examinations</td>
</tr>
<tr>
<td>• Observation</td>
<td>• Projects</td>
<td>• Class tests</td>
</tr>
<tr>
<td>• Class questions</td>
<td>• Investigations or research</td>
<td>• Practical examinations</td>
</tr>
<tr>
<td>• Lecturer, student, parent discussions</td>
<td>• Case studies</td>
<td>• Oral tests</td>
</tr>
<tr>
<td></td>
<td>• Practical exercises</td>
<td>• Open-book tests</td>
</tr>
<tr>
<td></td>
<td>• Demonstrations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Role-play</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interviews</td>
<td></td>
</tr>
</tbody>
</table>

Assessment tools

- Observation sheets
- Lecturer's notes
- Comments
- Checklists
- Rating scales
- Rubrics
- Marks (e.g. %)
- Rating scales (1-7)

Evidence

- Focus on individual students
- Subjective evidence based on lecturer observations and impressions
- Open middle: Students produce the same evidence but in different ways.
- Open end: Students use same process to achieve different results.

Students answer the same questions in the same way, within the same time.

10 TOOLS FOR ASSESSING STUDENT PERFORMANCE

Rating scales are marking systems where a symbol (such as 1 to 7) or a mark (such as 5/10 or 50%) is defined in detail. The detail is as important as the coded score. Traditional marking, assessment and evaluation mostly used rating scales without details such as what was right or wrong, weak or strong, etc.

Task lists and **checklists** show the student what needs to be done. These consist of short statements describing the expected performance in a particular task. The statements on the checklist can be ticked off when the student has adequately achieved the criterion. Checklists and task lists are useful in peer or group assessment activities.

Rubrics are a hierarchy (graded levels) of criteria with benchmarks that describe the minimum level of acceptable performance or achievement for each criterion. Using rubrics is a different way of assessing and cannot be compared to tests. Each criterion described in the rubric must be assessed separately. Mainly two types of rubrics, namely holistic and analytical, are used.

11 SELECTING AND/OR DESIGNING RECORDING AND REPORTING SYSTEMS

The selection or design of recording and reporting systems depends on the purpose of recording and reporting student achievement. Why particular information is recorded and how it is recorded determine which instrument will be used.

Computer-based systems, for example spreadsheets, are cost and time effective. The recording system should be user-friendly and information should be easily accessed and retrieved.

12 COMPETENCE DESCRIPTIONS

All assessment should award marks to evaluate specific assessment tasks. However, marks should be awarded against rubrics and not be simply a total of ticks for right answers. Rubrics should explain the competence level descriptors for the skills, knowledge, values and attitudes (SKVAs) that a student must demonstrate to achieve each level of the rating scale.

When lecturers or assessors prepare an assessment task or question, they must ensure that the task or question addresses an aspect of a Subject Outcome. The relevant Assessment Standard must be used to create the rubric to assess the task or question. The descriptions must clearly indicate the minimum level of attainment for each category on the rating scale.
13 STRATEGIES FOR COLLECTING EVIDENCE
A number of different assessment instruments may be used to collect and record evidence. Examples of instruments that can be (adapted and) used in the classroom include:

13.1 Record sheets
The lecturer observes students working in a group. These observations are recorded in a summary table at the end of each project. The lecturer can design a record sheet to observe students’ interactive and problem solving skills, attitudes towards group work and involvement in a group activity.

13.2 Checklists
Checklists should have clear categories to ensure that the objectives are effectively met. The categories should describe how the activities are evaluated and against what criteria they are evaluated. Space for comments is essential.

SECTION C: ASSESSMENT IN CIVIL AND CONSTRUCTION TECHNOLOGY

1 SCHEDULE OF ASSESSMENT
At NQF levels 2, 3 and 4, lecturers will conduct assessments as well as develop a schedule of formal assessments that will be undertaken in the year. All three levels also have an external examination that accounts for 50 percent of the total mark. The marks allocated to assessment tasks completed during the year, kept or recorded in a PoE, account for the other 50 percent.

The PoE and the external assessment include practical and written components. The practical assessment in Civil and Construction Technology must, where necessary, be subjected to external moderation by Umalusi or an appropriate Education and Training Quality Assurance (ETQA) body, appointed by the Umalusi Council in terms of Section 28(2) of the General and Further Education and Training Quality Assurance Act, 2001 (Act No. 58 of 2001).

2 RECORDING AND REPORTING
Civil and Construction Technology, as is the case for all the other Vocational subjects, is assessed according to five levels of competence. The level descriptions are explained in the following table.

Scale of Achievement for the Vocational component

<table>
<thead>
<tr>
<th>RATING CODE</th>
<th>RATING</th>
<th>MARKS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
<td>80-100</td>
</tr>
<tr>
<td>4</td>
<td>Highly Competent</td>
<td>70-79</td>
</tr>
<tr>
<td>3</td>
<td>Competent</td>
<td>50-69</td>
</tr>
<tr>
<td>2</td>
<td>Not yet competent</td>
<td>40-49</td>
</tr>
<tr>
<td>1</td>
<td>Not achieved</td>
<td>0-39</td>
</tr>
</tbody>
</table>

The programme of assessment should be recorded in the Lecturer’s Portfolio of Assessment for each subject. The following at least should be included in the Lecturer’s Assessment Portfolio:

- A contents page
- The formal schedule of assessment
- The requirements for each assessment task
- The tools used for each assessment task
- Recording instrument(s) for each assessment task
- A mark sheet and report for each assessment task

The college must standardise these documents.
The student’s PoE must include at least:

- A contents page
- The assessment tasks according to the assessment schedule
- The assessment tools or instruments for the task
- A record of the marks (and comments) achieved for each task

Where a task cannot be contained as evidence in the PoE, its exact location must be recorded and it must be readily available for moderation purposes.
ASSESSMENT OF CIVIL AND CONSTRUCTION TECHNOLOGY
LEVEL 4
3 INTERNAL ASSESSMENT OF SUBJECT OUTCOMES IN CIVIL AND CONSTRUCTION TECHNOLOGY - LEVEL 4

Topic 1: Set out construction working areas

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Do setting out for various construction structures according to drawings.</td>
<td>Setting out is performed using and applying instruments, procedures and methods for setting out according to the drawing.</td>
<td>Perform setting out using and applying instruments for setting out and procedures and methods according to the drawing.</td>
</tr>
<tr>
<td></td>
<td>Setting out of drainage trenches is explained and performed.</td>
<td>Explain and perform setting out of drainage trenches.</td>
</tr>
<tr>
<td></td>
<td>Various methods of foundation checks are explained and applied.</td>
<td>Explain and apply various methods of foundation checks.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.

Topic 2: Interpret and apply reinforced concrete drawings

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Identify and describe types and features of reinforcing drawings</td>
<td>Functions are identified from the drawing descriptions in terms of intended use for reinforcing on a construction site.</td>
<td>Identify from the drawing descriptions functions in terms of intended use for reinforcing on a construction site.</td>
</tr>
<tr>
<td></td>
<td>Abbreviations and symbols are identified and explained in accordance with project requirements.</td>
<td>Identify and explain abbreviations and symbols in accordance with project requirements.</td>
</tr>
<tr>
<td></td>
<td>Information given on scale drawings is interpreted to full size layout of structures.</td>
<td>Interpret information given on scale drawings to full size layout of structures.</td>
</tr>
<tr>
<td></td>
<td>Lines and services are identified and described in terms of horizontal location and depth of service</td>
<td>Identify and describe lines and services in terms of horizontal location and depth of service</td>
</tr>
</tbody>
</table>
ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.

SUBJECT OUTCOME

2.2 Use plans to locate features and structures on site.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Drawings are orientated in terms of site landmarks and the North indicator.</td>
<td>• Orientate drawings in terms of site landmarks and the North indicator.</td>
</tr>
<tr>
<td>• Information is extracted from drawings in terms of setting out requirements on site.</td>
<td>• Extract information from drawings in terms of setting out requirements on site.</td>
</tr>
<tr>
<td>• Features and structures on site are located in accordance with elevation, longitudinal section and cross section.</td>
<td>• Locate features and structures on site in accordance with elevation, longitudinal section and cross section.</td>
</tr>
<tr>
<td>• Lines and services are located in terms of horizontal location and depth of service.</td>
<td>• Locate lines and services in terms of horizontal location and depth of service.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.
SUBJECT OUTCOME

2.3 Determine project requirements.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The extent and nature of work is confirmed from specifications, drawings and schedules according to company requirements.</td>
<td>• Confirm the extent and nature of work from specifications, drawings and schedules according to company requirements.</td>
</tr>
<tr>
<td>• The types of materials are determined and quantities of materials are calculated from working drawings and specifications. Range: Order list for single project.</td>
<td>• Determine types of materials and calculate quantities of materials from working drawings and specifications. Range: Order list for single project.</td>
</tr>
<tr>
<td>• A cutting list is produced according to bending schedule.</td>
<td>• Produce a cutting list according to bending schedule.</td>
</tr>
<tr>
<td>• The quantity for the requirements of materials is determined from drawings and specifications.</td>
<td>• Determine quantity for the requirements of materials from drawings and specifications.</td>
</tr>
<tr>
<td>• Opening and lifts are identified and planned for in accordance with drawings.</td>
<td>• Identify and plan opening and lifts in accordance with drawings.</td>
</tr>
<tr>
<td>• Skills and knowledge required for the project are identified from working drawings and specifications according to company procedures.</td>
<td>• Identify skills and knowledge required for the project from working drawings and specifications according to company procedures.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED

- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED

- Assignments/ Tasks.
- Practical exercises.
- Role-play.

TEST-BASED

- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.

SUBJECT OUTCOME

2.4 Plan work sequences.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Materials are identified in terms of ordering requirements.</td>
<td>• Identify materials in terms of ordering requirements.</td>
</tr>
<tr>
<td>• Times for delivery of resources are determined from drawings and specifications.</td>
<td>• Determine times for delivery of resources from drawings and specifications.</td>
</tr>
<tr>
<td>• Sequence of work is planned according to availability of resources.</td>
<td>• Plan sequence of work in accordance with availability of resources.</td>
</tr>
<tr>
<td>• Tasks and delivery times on timeline is allocated in accordance with specified project completion dates.</td>
<td>• Allocate tasks and delivery times on timeline in accordance with specified project completion dates.</td>
</tr>
</tbody>
</table>
ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.

Topic 3: Construction concrete technology

| SUBJECT OUTCOME |
|-----------------|-----------------|
| 3.1 Describe the uses of concrete in structural applications. | |

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of concrete at all stages are described in terms of strengths and weaknesses.</td>
<td>Describe properties of concrete at all stages, in terms of strengths and weaknesses.</td>
</tr>
<tr>
<td>The uses of concrete are explained in terms of its structural applications.</td>
<td>Explain the uses of concrete, in terms of its structural applications.</td>
</tr>
<tr>
<td>The factors affecting concrete strength are described.</td>
<td>Describe factors affecting concrete strength.</td>
</tr>
<tr>
<td>The optimum durability of concrete is explained in terms of quality and costs.</td>
<td>Explain optimum durability of concrete, in terms of quality and costs.</td>
</tr>
<tr>
<td>The appearance of concrete is described in terms of colour, texture and time-related changes.</td>
<td>Describe appearance of concrete, in terms of colour, texture and time-related changes.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Projects.
- Practical exercises.
- Demonstrations.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations
- Oral tests.
SUBJECT OUTCOME

3.2 Explain the use and different mixes of concrete.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mixing of concrete is described in terms of sequencing and duration.</td>
<td>• Describe mixing of concrete, in terms of sequencing and duration.</td>
</tr>
<tr>
<td>• The consequences of incorrect mixing of concrete are explained, in terms of affect on durability and strength of the structure.</td>
<td>• Explain the consequences of incorrect mixing of concrete, in terms of affect on durability and strength of the structure.</td>
</tr>
<tr>
<td>• The usage of different grade and size of aggregate is described in terms of workability of concrete.</td>
<td>• Describe the usage of different grade and size of aggregate, in terms of workability of concrete.</td>
</tr>
<tr>
<td>• The use of different types of cement is described in terms of early and late strength of concrete.</td>
<td>• Describe the use of different types of cement, in terms of early and late strength of concrete.</td>
</tr>
<tr>
<td>• Different materials and quantities of material used in foundations, slabs and beams are described.</td>
<td>• Describe different materials and quantities of material used in foundations, slabs and beams.</td>
</tr>
<tr>
<td>• The purpose and functions of concrete are explained in terms of dimensions and appearance of finished products.</td>
<td>• Explain purpose and functions of concrete, in terms of dimensions and appearance of finished products.</td>
</tr>
<tr>
<td>• The purpose and functions of steel reinforcement is explained in terms of concrete strength and durability.</td>
<td>• Explain the purpose and functions of steel reinforcement, in terms of concrete strength and durability.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Projects.
- Practical exercises.
- Demonstrations.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Oral tests.
SUBJECT OUTCOME

3.3 Explain concrete installation.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Appropriate placing methods for different situations are described.</td>
<td>• Describe appropriate placing methods for different situations.</td>
</tr>
<tr>
<td>• Transporting and placing of concrete is described in terms of equipment used and sequencing.</td>
<td>• Describe transporting and placing of concrete, in terms of equipment used and sequencing.</td>
</tr>
<tr>
<td>• Compaction of concrete is described in terms of equipment used and sequencing.</td>
<td>• Describe compaction of concrete, in terms of equipment used and sequencing.</td>
</tr>
<tr>
<td>• The consequences of insufficient compaction are explained in terms of appearance and strength of finished products.</td>
<td>• Explain consequences of insufficient compaction, in terms of appearance and strength of finished products.</td>
</tr>
<tr>
<td>• The process of adding fresh concrete to hardened concrete is explained in terms of normal concreting practice.</td>
<td>• Explain process of adding fresh concrete to hardened concrete, in terms of normal concreting practice.</td>
</tr>
<tr>
<td>• The consequences of not preparing joints are explained in terms of the effect on structural strength.</td>
<td>• Explain consequences of not preparing joints, in terms of effect on structural strength.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Projects.
- Practical exercises.
- Demonstrations.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Oral tests.
SUBJECT OUTCOME

3.4 Explain specialized concrete.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The purpose for specialized concrete is explained in terms of abnormal demand.</td>
<td>• Explain purpose for specialized concrete, in terms of abnormal demand.</td>
</tr>
<tr>
<td>• Different types of specialized concrete are defined in terms of characteristic requirements and their uses described.</td>
<td>• Define different types of specialized concrete, in terms of characteristic requirements and describe their uses.</td>
</tr>
<tr>
<td>• The benefits of using different types of specialized concrete are explained in terms of designed purpose of concrete.</td>
<td>• Explain the benefits of using different types of specialized concrete, in terms of designed purpose of concrete.</td>
</tr>
<tr>
<td>• The difference between normal concrete and specialized concrete are explained in terms of mixing, placing and curing requirements.</td>
<td>• Explain difference between normal concrete and specialized concrete, in terms of mixing, placing and curing requirements.</td>
</tr>
<tr>
<td>• The consequences of not treating specialized concrete with the required care are explained in terms of potential structural weakness and costs.</td>
<td>• Explain the consequences of not treating specialized concrete with the required care, in terms of potential structural weakness and costs.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Observation.
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Projects.
- Practical exercises.
- Demonstrations.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Oral tests.
Topic 4: Foundation work used to support and transmit loads

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Explain and investigate foundation works.</td>
<td>• The reasons for casting foundations in building structures are explained.</td>
<td>• Explain reasons for casting foundations in building structures.</td>
</tr>
<tr>
<td></td>
<td>• The appearance of various soil conditions that must be considered when casting foundations, are explained.</td>
<td>• Explain the appearance of various soil conditions that must be considered when casting foundations.</td>
</tr>
</tbody>
</table>
| | • Various reinforced concrete and concrete foundations used in building structures are explained.
 Range: Strip, raft column, cantilevered foundations. | • Explain various reinforced concrete and concrete foundations used in building structures.
 Range: Strip, raft column, cantilevered foundations. |
| | • The reasons for underpinning of foundations are explained. | • Explain reasons for underpinning of foundations. |
| | • Various soil conditions are investigated and appropriate foundations are indicated to cast on each. | • Investigate various soil conditions and indicate appropriate foundations to cast on each. |
| | • An investigation is conducted into different concrete foundations and underpinning completed in building structures and a report is compiled. | • Investigate and report on different concrete foundations and underpinning completed in building structures. |

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
• Class questions.
• Educator and student discussions.

TASK-BASED
• Assignments/tasks.
• Practical exercises.
• Role-play.

TEST-BASED
• Examinations.
• Class tests.
• Practical examinations.
• Written examinations.

Topic 5: Erecting structural steel for beams, slabs and columns

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Explain and perform structural steel erection</td>
<td>• Different types of structural profiles and their uses are explained.</td>
<td>• Explain different types of structural profiles and their uses.</td>
</tr>
<tr>
<td></td>
<td>• Various beam connections are explained and constructed.</td>
<td>• Explain and construct various beam connections.</td>
</tr>
<tr>
<td></td>
<td>• Erection of steel structures in beams, slabs and columns is explained and performed.</td>
<td>• Explain and perform erection of steel structures in beams, slabs and columns.</td>
</tr>
</tbody>
</table>
Topic 6: Floor and wall finishing used in domestic, school and large factory floors

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Explain and perform floor finishing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>The characteristics of floor finishing are described.
 Range: Clay tiles, glazed tiles, granolithic floors.</td>
<td>Describe the characteristics of floor finishing.
 Range: Clay tiles, glazed tiles, granolithic floors.</td>
</tr>
<tr>
<td>Various floor finishes are explained and performed.
 Range: Clay and quarry tiles, wooden granolithic floors, glazed tiles and PVC tiles.</td>
<td>Explain and perform various floor finishes.
 Range: Clay and quarry tiles, wooden granolithic floors, glazed tiles and PVC tiles.</td>
</tr>
<tr>
<td>Various wall finishes are described and performed
 Range: Plastering, painting, glazed wall tiles.</td>
<td>Describe and perform various wall finishes.
 Range: Plastering, painting, glazed wall tiles.</td>
</tr>
<tr>
<td>Safety standards are adhered to when performing finishing activities.</td>
<td>Adhere to safety standards when performing finishing activities.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.
Topic 7: Electrical work in a single level building

SUBJECT OUTCOME

7.1 Explain electrical work in a single level building.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Electrical symbols, wiring and switch gear in a building are identified and explained. Range: Distribution board, earth leakage relay, pipes, plugs, switch boxes.</td>
<td>• Identify and explain electrical symbols, wiring and switch gear in a building. Range: Distribution board, earth leakage relay, pipes, plugs, switch boxes.</td>
</tr>
<tr>
<td>• The importance and function of an earth leakage relay is explained.</td>
<td>• Explain the importance and function of an earth leakage relay.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED

- Class questions.
- Educator and student discussions.

TASK-BASED

- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED

- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.

SUBJECT OUTCOME

7.2 Use an elementary electrical plan of a building to install electrical wiring and switch gear in a building.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The layout and distribution of electrical wiring and switch gear needed is identified according to an elementary electrical plan of a building. Range: Electrical PVC pipes, electrical plugs and switch boxes, distribution board installed in floor, roof and walls of a small building.</td>
<td>• Identify the layout and distribution of electrical wiring and switch gear needed according to an elementary electrical plan of a building. Range: Electrical PVC pipes, electrical plugs and switch boxes, distribution board installed in floor, roof and walls of a small building.</td>
</tr>
<tr>
<td>• Electrical wiring and switch gear are installed according to an elementary electrical plan of a building. Range: Electrical PVC pipes, electrical plugs and switch boxes, distribution board installed in floor, roof and walls of a small building.</td>
<td>• Install electrical wiring and switch gear according to an elementary electrical plan of a building. Range: Electrical PVC pipes, electrical plugs and switch boxes, distribution board installed in floor, roof and walls of a small building.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED

- Class questions.
- Educator and student discussions.

TASK-BASED

- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED

- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.
SUBJECT OUTCOME

7.3 Investigate a variety of distribution boards in various buildings and report on it

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>The location of distribution boards in various buildings is investigated and a circuit diagram of a distribution board is obtained.</td>
<td>Investigate the location of distribution boards in various buildings and obtain a circuit diagram of a distribution board.</td>
</tr>
<tr>
<td>A circuit diagram is studied, various circuit diagrams are compared and the specifics of the diagram are reported on.</td>
<td>Study a circuit diagram, compare various circuit diagrams and report on the specifics of the diagram.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Assessment in this subject will be as follows, and not restricted to:

OBSERVATION BASED
- Class questions.
- Educator and student discussions.

TASK-BASED
- Assignments/tasks.
- Practical exercises.
- Role-play.

TEST-BASED
- Examinations.
- Class tests.
- Practical examinations.
- Written examinations.
4 SPECIFICATIONS FOR EXTERNAL ASSESSMENT IN CIVIL AND CONSTRUCTION TECHNOLOGY - LEVEL 4

4.1 Integrated summative assessment task (ISAT)
A compulsory component of the external assessment (ESASS) is the integrated summative assessment task (ISAT). The integrated summative assessment task (ISAT) draws on the students’ cumulative learning achieved throughout the year. The task requires integrated application of competence and is executed and recorded in compliance with assessment conditions.

Two approaches to the integrated summative assessment task (ISAT) may be as follows:

- The students are assigned a task at the beginning of the year which they will have to complete in phases during the year to obtain an assessment mark. A final assessment is made at the end of the year when the task is completed.

OR

- Students achieve the competencies during the year but the competencies are assessed cumulatively in a single assessment or examination session at the end of the year.

The integrated summative assessment task (ISAT) is set by an externally appointed examiner and is conveyed to colleges in the first quarter of the year.

The integrated assessment approach enables students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

4.2 National Examination
A national examination is conducted annually in October or November by means of a paper(s) set and moderated externally. The following distribution of cognitive application is suggested:

<table>
<thead>
<tr>
<th>LEVEL 4</th>
<th>KNOWLEDGE AND COMPREHENSION</th>
<th>APPLICATION</th>
<th>ANALYSIS, SYNTHESIS AND EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40%</td>
<td>50%</td>
<td>10%</td>
</tr>
</tbody>
</table>