This memorandum consists of 14 pages.
NOTE:
- If a candidate answers a question TWICE and does not delete any attempt, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in ALL aspects of the marking memorandum.
- A learner cannot use what s/he must prove to prove it (i.e. the circular argument.).

QUESTION 1

1.1 \(T_{k+1} = T_k - 2 \); \(k \geq 1 \); \(T_1 = 12 \)

\[
\begin{align*}
T_1 &= 12 \\
T_2 &= 12 - 2 = 10 \\
T_3 &= 10 - 2 = 8 \\
T_4 &= 8 - 2 = 6
\end{align*}
\]

\(\checkmark 10 \)
\(\checkmark 8 \)
\(\checkmark 6 \) \hspace{1cm} (3)

1.2 \(12 + 10 + 8 + 6 + 4 + 2 + 0 + (-2) + (-4) + (-6) + (-8) + (-10) + (-12) = 0 \)

\(\therefore 13 \) terms

Note:
If a learner writes out
12 + 10 + 8 + 6 + 4 + 2 + 0 then 1/3 marks

Note:
Answer only: FULL marks

OR

There are 6 positive terms before the 7th term, which is 0. We need 6 negative terms of equal value to the positive terms so that the sum is zero

6 positive terms + 1 zero term + 6 negative terms
= 13 terms

\(\checkmark 12 \) terms

\(\checkmark 13 \) terms \hspace{1cm} (3)

OR

\[
\begin{align*}
\frac{n}{2} [2(12) + (n-1)(-2)] &= 0 \\
\frac{n}{2} [24 + 2 - 2n] &= 0 \\
\frac{n}{2} [26 - 2n] &= 0 \\
13n - n^2 &= 0 \\
n(13 - n) &= 0 \\
n \neq 0 \quad \text{or} \quad n = 13
\end{align*}
\]

\(\checkmark \) substitution into the arithmetic sum formula

\(\checkmark \frac{n}{2} [26 - 2n] = 0 \)

\(\checkmark 13 \) terms \hspace{1cm} (3)
QUESTION 2

<table>
<thead>
<tr>
<th>2.1</th>
<th>$42 - 28 = 14$</th>
<th>✓ answer (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Approximately 88 kg</td>
<td>✓ answer (1)</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Accept a range from 86 to 89 kg</td>
<td>✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)</td>
</tr>
<tr>
<td>2.3</td>
<td>15 learners in the sample have a weight of less than 80 kg. One would expect $\frac{15}{50} \times 250 = 75$ learners in the grade to have a weight of less than 80 kg.</td>
<td>✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)</td>
</tr>
<tr>
<td>OR</td>
<td>15 learners in the sample have a weight of less than 80 kg. One would expect $15 \times 5 = 75$ learners in the grade to have a weight of less than 80 kg.</td>
<td>✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)</td>
</tr>
<tr>
<td>NOTE:</td>
<td>✓ sensible explanation of random sample (1) [5]</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Accept $\frac{14}{50} \times 250 = 70$</td>
<td>✓ answer (2)</td>
</tr>
<tr>
<td>-</td>
<td>Answer as percentage: 1/2 marks</td>
<td>✓ answer (2)</td>
</tr>
<tr>
<td>-</td>
<td>Answer only: 2/2 marks</td>
<td>✓ answer (2)</td>
</tr>
</tbody>
</table>

| 2.4 | This sampling method is biased towards those who arrive early on a Monday morning. In this way all the learners in the Grade do not have the same chance of being selected for the sample. | ✓ answer (3) [5] |

QUESTION 3

3.1	For mutually exclusive events $P(A \text{ or } B) = P(A) + P(B)$ $0,7 = 0,4 + k$ $k = 0,3$	✓ 0,7 = 0,4 + k ✓ answer (2)
Note:	Answer only: FULL marks	✓ 0,7 = 0,4 + k ✓ answer (2)
NOTE:	If the candidate writes down $k = 1 - 0,7 = 0,3$: 0/2 marks	✓ 0,7 = 0,4 + k ✓ answer (2)

3.2	For independent events $P(A \text{ and } B) = P(A) \cdot P(B)$ $0,4k$ $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ $0,7 = 0,4 + k - 0,4k$ $0,3 = 0,6k$ $k = 0,5$	✓ $P(A \text{ and } B) = P(A) \cdot P(B)$ ✓ $0,4k$ ✓ answer (4)
Note:	✓ $P(A \text{ and } B) = P(A) \cdot P(B)$ ✓ $0,4k$ ✓ answer (4)	
OR	$0,7 = 0,4 + k - 0,4k$ $0,3 = 0,6k$ $k = 0,5$	✓ $0,7 = 0,4 + k - 0,4k$ ✓ answer (4)
-	Answer only: 1/4 marks	✓ $0,7 = 0,4 + k - 0,4k$ ✓ answer (4)
-	Wrong formula: 0/4 marks	✓ $0,7 = 0,4 + k - 0,4k$ ✓ answer (4)
QUESTION 4

4.1 21 minutes is 1 standard deviation from the mean
\[\therefore 34\% \text{ of the pizzas are delivered between 21 and 24 minutes} \]

Note: Answer only: FULL marks

4.2 15 minutes is 3 standard deviations to the left of the mean \[\therefore 50\% \]
27 minutes is 1 standard deviation to the right of the mean \[\therefore 34\% \]
84\% of the pizzas are delivered between 15 and 27 minutes

Note: Answer only: FULL marks

4.3 The required 2\% is the area found to the right of 2 standard deviations on the right hand side of the mean.
Maximum for delivery should be
\[24 + 2 \times (3) \]
\[= 30 \text{ minutes} \]

Note: Answer only: FULL marks

QUESTION 5

5.1 Number of unique codes
\[= 7 \times 7 \times 7 \]
\[= 7^3 \]
\[= 343 \]

Note: Answer only: FULL marks

5.2 Number of unique codes without repetition
\[= 7 \times 6 \times 5 \]
\[= 210 \]

Note: Answer only: FULL marks

5.3 Number of codes with repetition that are greater than 300 and divisible by 5
\[= 4 \times 7 \times 2 \times 1 \]
\[= 55 \]

Note:
- No CA marking for the answer.
- Answer only 3/3 marks

OR
For a 100 numbers there are 14 numbers divisible by 5
\[14 \times 4 = 56 \]
\[56 - 1 = 55 \]

Copyright reserved

Please turn over
QUESTION 6

6.1

\[M \]
\[79 - x \]
\[\checkmark \]
\[20 \]
\[19 - x \]
\[\checkmark \]
\[11 \]
\[16 \]
\[\checkmark \]
\[40 - x \]
\[S \]
\[0 \]

6.2

\[79 - x + 20 + x + 11 + 19 - x + 16 + 40 - x = 173 \]
\[185 - 2x = 173 \]
\[\sqrt{x = 6} \]

OR

232 complaints and 173 people in total
94 complaints from 47 people
138 complaints from remaining 126 people
For the two to be equal
\[126 - x = 138 - 3x \]
\[2x = 12 \]
\[x = 6 \]

Note: Check the reasonableness of the answer.

6.3

\[P(\text{at least two complaints}) = \frac{11 + 20 + 6 + 16}{173} = \frac{53}{173} = 0.31 \] (0.30635838...)

OR 30.64%

Note: Check the reasonableness of the answer.
QUESTION 7

<table>
<thead>
<tr>
<th>Noon temperature (in °C)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of electricity used</td>
<td>37</td>
<td>36</td>
<td>32</td>
<td>33</td>
<td>32</td>
<td>28</td>
<td>27</td>
<td>23</td>
<td>20</td>
</tr>
</tbody>
</table>

Scatter plot showing noon temperature vs electricity consumption

- All 9 points plotted correctly
- 2 marks if 5 – 8 points are plotted correctly
- 1 mark if 1 – 4 points are plotted correctly.

7.1 See scatter plot above

Note:
Please ignore the point (0 ; 41).
7.2 \(a = 40.97 \quad (40.97108844...) \)
\(b = -1.74 \quad (-1.736394558...) \)
\(\hat{y} = 40.97 - 1.74x \)

Note:
- Penalise 1 mark for incorrect rounding to ONE decimal place in either 7.2 or 7.3
- Answer only: FULL marks

NOTE:
If the candidate works the coefficients out manually that

\[b = \frac{-204.2}{117.6} \]

then 2 marks for \(b \).

7.3 \(r = -0.97 \quad (-0.9699269087...) \)

NOTE: If the candidate gives \(b = \frac{6.139218}{3.42928} r \) and not simplified then 1 mark.

7.4 There is a strong negative correlation between the noon temperature and the units of electricity used.

OR
As the noon temperature increases, the units of electricity used decreases.

OR
As the noon temperature decreases, the units of electricity used increases.

7.5 \(\hat{y} \approx 40.97 - 1.74(8) \)
\(\approx 27.05 \)

Note:
- Answer only: 2/2 marks
- Accept a range of 26.5 – 27.5 if the least squares regression line is drawn and the answer is read off: 2/2 marks

\[\hat{y} \approx 27.0799 \approx 27.08 \]
QUESTION 8

8.1 Draw diameter AM and join M to B.
\[\hat{A}_1 + \hat{A}_2 = 90^\circ \quad (\text{rad} \perp \text{tangent}) \]
\[\hat{B}_1 + \hat{B}_2 = 90^\circ \quad (\angle \text{s in a semi circle}) \]
\[\hat{B}_2 = \hat{A}_2 \quad (\angle \text{s in same seg}) \]
\[\hat{B}_1 = \hat{A}_1 \]

OR

Draw radii OC and OA
Let \(\hat{A}_2 = x \)
\[\hat{C}_1 = x \quad (\angle \text{opp} = \text{radii}) \]
\[\hat{A}_1 = 90^\circ - x \quad (\text{rad} \perp \text{tan}) \]
\[\angle AOC = 180^\circ - 2x \quad (\angle \text{sum} \Delta) \]
\[\angle ABC = 90^\circ - x \quad (\angle \text{circ cent} = 2 \angle \text{circumference}) \]
\[ABC = \hat{A}_1 \quad (= 90^\circ - x) \]

NOTE:
If there is no construction: 0 / 5 marks

If candidate changes lettering and states “Similarly”: full marks

OR

Draw QA extend to P. Draw tangent CP at C.
PC = PA \quad (\text{tan from comm pt})
\[\hat{C}_2 = \hat{A}_1 \quad (\angle \text{opp} = \text{sides}) \]
\[\angle C\hat{O}\hat{A} = 2\hat{A}BC \]
(\angle \text{circ cent} = 2\angle \text{circumf})
\[\hat{A}_1 + \hat{A}_2 = 90^\circ \quad (\text{tan} \perp \text{radius}) \]
\[C\hat{O}\hat{A} = 180^\circ - (90^\circ - \hat{A}_1 + 90^\circ - \hat{C}_2) \]
\[= \hat{A}_1 + \hat{C}_2 \]
\[= \hat{A}_1 + \hat{A}_1 \]
\[= 2\hat{A}_1 \]
\[\hat{A}_1 = \frac{1}{2} \angle C\hat{O}\hat{A} \]
\[= \angle C\hat{B}\hat{A} \]

OR

\[\checkmark \text{construction} \]
\[\checkmark \text{S/R} \]
\[\checkmark \hat{B}_1 + \hat{B}_2 = 90^\circ \]
\[\checkmark \angle \text{s in a semi circle} \]
\[\checkmark \text{S/R} \]

\[\checkmark \text{construction} \]
\[\checkmark \hat{A}_1 = 90^\circ - x \]
\[\checkmark \text{rad} \perp \text{tan} \]
\[\checkmark \text{S/R} \]
\[\checkmark \text{S/R} \]

\[\checkmark \hat{A}_1 + \hat{A}_2 = 90^\circ \]
\[\checkmark \text{tan} \perp \text{radius} \]
Draw diameter AM and Join M and C
\[\hat{MCA} = 90^\circ \quad (\angle \text{s in semi circle}) \]
\[\hat{AMC} + \hat{A}_2 = 90^\circ \quad (\angle \text{sum } \Delta) \]
\[\hat{A}_1 + \hat{A}_2 = 90^\circ \quad (\text{rad } \perp \text{ tangent}) \]
\[\hat{AMC} = \hat{A}_1 \]
\[\hat{AMC} = \hat{B} \quad (\angle \text{s in same seg}) \]
\[\hat{A}_1 = \hat{B} \]

\[\hat{W} = 90^\circ \quad (\tan \perp \text{ radius}) \]

<table>
<thead>
<tr>
<th>8.2.1</th>
<th>[\hat{WRS} = 90^\circ] (tan \perp radius)</th>
<th>✓ statement</th>
</tr>
</thead>
</table>

8.2.2
\[\hat{RST} = 50^\circ \quad (\text{tan ch th}) \]
\[\hat{W} = 40^\circ \quad (\angle \text{sum } \Delta) \]

\textbf{OR}
\[\hat{T}_1 = 90^\circ \quad (\angle \text{s in semi circle}) \]
\[\hat{W} + \hat{R}_1 = \hat{T}_1 \quad (\text{ext } \angle \Delta) \]
\[\hat{W} = 40^\circ \]

\[\hat{R}_2 = 40^\circ \quad (\tan \perp \text{ radius}) \]
\[\hat{P}_1 = 40^\circ \quad (\angle \text{s in same seg}) \]

| ✓ S/R |
| ✓ \(\hat{W} = 40^\circ\) |

| ✓ \(\hat{W} + \hat{R}_1 = \hat{T}_1\) |
| ✓ \(\hat{W} = 40^\circ\) |

| ✓ \(\hat{R}_2 = 40^\circ\) |
| ✓ \(\hat{P}_1 = 40^\circ\) |
| ✓ \(\angle \text{s in same seg}\) |
8.2.4

<table>
<thead>
<tr>
<th>Mathematics/P3</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>NSC –</td>
</tr>
<tr>
<td>(\hat{P}_1 = \hat{W}) ((= 40^\circ))</td>
<td>(\checkmark \hat{P}_1 = \hat{W})</td>
</tr>
<tr>
<td>WVPT is a cyclic quadrilateral ((\text{ext } \angle = \text{int opp}))</td>
<td>(\checkmark \text{WVPT is a cyclic quadrilateral})</td>
</tr>
<tr>
<td>(\hat{V}_1 = \hat{P}\hat{T}\hat{S}) ((\text{ext } \angle \text{ cyclic quad}))</td>
<td>(\checkmark \text{ext } \angle = \text{in opp})</td>
</tr>
<tr>
<td>OR</td>
<td>(\checkmark \text{ext } \angle \text{ cyclic quad})</td>
</tr>
<tr>
<td>(\hat{T}_1 = 90^\circ) ((\angle \text{s in semi circle}))</td>
<td>(\checkmark) (\angle \text{s in semi circle})</td>
</tr>
<tr>
<td>(\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2)</td>
<td>(\checkmark \hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2)</td>
</tr>
<tr>
<td>(\hat{T}_2 = \hat{S}_1) ((\angle \text{s in same seg}))</td>
<td>(\checkmark \hat{T}_2 = \hat{S}_1)</td>
</tr>
<tr>
<td>(\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{S}_1)</td>
<td>(\checkmark \text{(\angle \text{s in same seg})})</td>
</tr>
<tr>
<td>(\hat{V}_1 = 90^\circ + \hat{S}_1) ((\text{ext } \angle \Delta))</td>
<td>(\checkmark \hat{V}_1 = 90^\circ + \hat{S}_1)</td>
</tr>
<tr>
<td>(\hat{V}_1 = \hat{P}\hat{T}\hat{S}) ((\text{ext } \angle \text{ cyclic quad}))</td>
<td>(\checkmark \text{ext } \angle \text{ cyclic quad})</td>
</tr>
<tr>
<td>OR</td>
<td>(\text{(4)})</td>
</tr>
<tr>
<td>(\hat{P}_2 = 140^\circ) ((\angle \text{s on str line}))</td>
<td>(\checkmark \hat{W} + \hat{P}_2 = 180^\circ)</td>
</tr>
<tr>
<td>WVPT is cyclic quad ((\text{opp } \angle \text{s suppl}))</td>
<td>(\checkmark \text{WVPT is a cyclic quadrilateral})</td>
</tr>
<tr>
<td>(\hat{V}_1 = \hat{P}\hat{T}\hat{S}) ((\text{ext } \angle \text{ cyclic quad}))</td>
<td>(\checkmark \text{opp } \angle \text{ suppl})</td>
</tr>
<tr>
<td>OR</td>
<td>(\checkmark \text{ext } \angle \text{ cyclic quad})</td>
</tr>
<tr>
<td>(\hat{V}_1 = \hat{R}_1 + \hat{R}_2 + \hat{S}_1) ((\text{ext } \angle \Delta))</td>
<td>(\checkmark \hat{V}_1 = 90^\circ + \hat{S}_1)</td>
</tr>
<tr>
<td>(\hat{V}_1 = 90^\circ + \hat{S}_1)</td>
<td>(\checkmark \hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2)</td>
</tr>
<tr>
<td>(\hat{T}_2 = \hat{S}_1) ((\angle \text{s in same seg}))</td>
<td>(\checkmark \hat{T}_2 = \hat{S}_1)</td>
</tr>
<tr>
<td>(\hat{V}_1 = \hat{P}\hat{T}\hat{S})</td>
<td>(\checkmark \text{(\angle \text{s in same seg})})</td>
</tr>
<tr>
<td>OR</td>
<td>(\text{(4)})</td>
</tr>
<tr>
<td>In (\triangle \hat{P}\hat{T}\hat{S} \text{ and } \triangle \hat{W}\hat{V}\hat{S})</td>
<td>(\checkmark \text{identification of triangles})</td>
</tr>
<tr>
<td>(\hat{P}_1 = \hat{W}) ((= 40^\circ))</td>
<td>(\checkmark \hat{P}_1 = \hat{W})</td>
</tr>
<tr>
<td>(\hat{S}_2) is common</td>
<td>(\checkmark \hat{S}_2) is common</td>
</tr>
<tr>
<td>(\hat{V}_1 = \hat{P}\hat{T}\hat{S}) ((\angle \text{ sum } \Delta))</td>
<td>(\checkmark \angle \text{ sum } \Delta)</td>
</tr>
</tbody>
</table>

Copyright reserved
QUESTION 9

9. \(\hat{C} = 90^\circ \)
 (\(\angle s \) in semi circle)
 O\(\hat{E} \)A = 90°
 (corres \(\angle s \); OD \(\parallel \) BC)
 AE = 8 cm
 (line from circ cent \(\perp \) ch bis ch)
 OE = 6 cm
 (Pythagoras)
 ED = 10 - 6
 = 4 cm

OR

\(\hat{C} = 90^\circ \)
(\(\angle s \) in semi circle)
O\(\hat{E} \)A = 90°
(corres \(\angle s \); OD \(\parallel \) BC)
OE \(\parallel \) BC
(given)
OA = OB
(radii)
AE = EC = 8 cm
(midpoint theorem)
OE = 6 cm
(Pythagoras)
ED = 10 - 6
= 4 cm

OR

\(\hat{C} = 90^\circ \)
(\(\angle s \) in semi circle)
\(BC^2 = (20)^2 - (16)^2 \)
BC = 12
OE = \(\frac{1}{2} BC \)
(midpoint theorem)
OE = 6 cm
OD = 10 cm
ED = 10 - 6
= 4 cm

OR

\(\hat{C} = 90^\circ \)
(\(\angle s \) in semi circle)
\(BC^2 = (20)^2 - (16)^2 \)
BC = 12
OE = \(\frac{1}{2} BC \)
(midpoint theorem)
OE = 6 cm
ED = 4 cm

[5]

Copyright reserved
QUESTION 10

10.1
\[\hat{A} = \hat{D}_4 = x \quad (\text{tan ch th}) \]
\[\hat{E}_2 = x \quad (\text{tan ch th}) \textbf{ OR } (\angle s \text{ in same seg}) \]
\[\hat{D}_2 = \hat{A} = x \quad (\text{alt } \angle s; \text{ CA } \parallel \text{ DF}) \]

10.2
In \(\triangle BHD \) and \(\triangle FED \)
1. \[\hat{B}_2 = \hat{F} \quad (\angle s \text{ in same seg}) \]
2. \[\hat{D}_3 = \hat{D}_1 \quad (= \text{ chs subt } = \angle s) \]
\(\triangle BHD \parallel \triangle FED \ (\angle \angle \angle) \)

10.3
\[
\begin{align*}
\frac{FE}{FD} &= \frac{BD}{BH} \quad (\parallel \Delta s) \\
\text{But } FE &= AB \quad (\text{given}) \\
\frac{AB}{BD} &= \frac{FD}{BH} \\
AB.BD &= FD.BH
\end{align*}
\]

[13]
QUESTION 11

Diagram:

![Diagram of a parallelogram with points A, B, C, D, E, F, P, and Q connected by lines and arrows indicating parallel and proportional relationships.]

11.1
- \(AF = FC \) (diags of parallelogram bisect)
- \(FE \parallel CD \)
- \(AE = ED \) (Prop Th; FE \parallel CD) **OR** (Midpoint Theorem)

\[\frac{AC}{CP} = \frac{1}{2}\]	(given)
\[\frac{AD}{DQ} = \frac{1}{2}\]	(given)
\[\frac{AC}{CP} = \frac{AD}{DQ}\]	(converse proportionality theorem)
\(CD \parallel PQ \)	(given)
\(CD \parallel FE \)	\(\therefore PQ \parallel FE \)

Reason:
- \(AF = FC \)
- \(reason \)

Marks: (2)

11.2

\[\frac{AC}{AP} = \frac{1}{3}\]	(given)
\[\frac{AD}{AQ} = \frac{1}{3}\]	(given)
\[\frac{AC}{AP} = \frac{AD}{AQ}\]	(converse proportionality theorem)
\(CD \parallel PQ \)	(given)
\(CD \parallel FE \)	\(\therefore PQ \parallel FE \)

Reason:
- \(ratios \ equal \)
- \(CD \parallel PQ \)
- \(reason: \ converse \ prop \ th \ and \ conclusion \)

Marks: (3)

OR

\[\frac{AF}{AP} = \frac{1}{6}\]	(given)
\[\frac{AE}{AQ} = \frac{1}{6}\]	(given)
\[\frac{AF}{AE} = \frac{AP}{AQ}\]	(converse proportionality theorem)
\(\therefore PQ \parallel FE \)	\(conv \ prop \ theorem \)

Reason:
- \(\frac{AF}{AP} = \frac{1}{6} \)
- \(\frac{AF}{AE} = \frac{AP}{AQ} \)
- \(conv \ prop \ theorem \)

Marks: (3)
11.3 In $\triangle AEF$ and $\triangle APQ$
1. \hat{A} is common
2. $\angle A\hat{E}F = \angle A\hat{Q}P$ (corres \angles; $FE \parallel PQ$)
3. $\angle A\hat{F}E = \angle A\hat{P}Q$ (corres \angles; $FE \parallel PQ$)

$\therefore \triangle AEF \parallel \triangle AQP (\angle \angle \angle)$

$\frac{FE}{AF} = \frac{AP}{PQ} \quad (\parallel \Delta s)$

$\frac{FE}{60} = \frac{1}{6}$

$FE = 10 \text{ cm}$

OR

In $\triangle ADC$ and $\triangle APQ$
1. \hat{A} is common
2. $\angle AD\hat{C} = \angle A\hat{Q}P$ (corres \angles; $CD \parallel PQ$)
3. $\angle A\hat{C}D = \angle A\hat{P}Q$ (corres \angles; $CD \parallel PQ$)

$\therefore \triangle ADC \parallel \triangle AQP (\angle \angle \angle)$

$\frac{AC}{AP} = \frac{AD}{AQ} = \frac{1}{3} \quad (\parallel \Delta s)$

$\frac{CD}{3} = \frac{1}{PQ}$

$CD = 20 \text{ cm}$

But $AF = FC$

$AE = ED$ (Midpoint Theorem)

$FE = \frac{1}{2} CD$

$FE = 10 \text{ cm}$

NOTE: If the similarity has not been proven, then max 3/5 marks

\checkmark first pair of angles equal with reason

\checkmark second pair of angles equal with reason

$\frac{AF}{AP} = \frac{1}{6}$

$\frac{FE}{PQ} = \frac{AF}{AP}$

\checkmark answer

\checkmark first pair of angles equal with reason

\checkmark second pair of angles equal with reason

$\frac{CD}{3} = \frac{1}{PQ}$

\checkmark $FE = \frac{1}{2} CD$

\checkmark answer

TOTAL: 100