basic education Department: Basic Education REPUBLIC OF SOUTH AFRICA # NATIONAL SENIOR CERTIFICATE **GRADE 12** ### **AGRICULTURAL TECHNOLOGY** FEBRUARY/MARCH 2014 **MEMORANDUM** **MARKS: 200** This memorandum consists of 11 pages. #### **SECTION A** #### **QUESTION 1** - 1.1 B - 1.2 B - 1.3 C - 1.4 B - 1.5 B - 1.6 A - 1.7 A - 1.8 A - 1.9 A - 1.10 C - 1.11 C - 1.12 B - 1.13 C - 1.14 A - 1.15 A - 1.16 B - 1.17 A - 1.18 A - 1.19 B - 1.20 B **TOTAL SECTION A: (20 x 2) 40** #### **SECTION B** ### **QUESTION 2: MATERIALS AND STRUCTURES** | 2.1 | 2.1.1 | Nail plate. ✓
Hold the beams of the truss together. ✓ | (2) | |-----|-------|--|-----| | | 2.1.2 | Pine. ✓ | (1) | | | 2.1.3 | Triangles because of their specific shape/design are very strong. ✓ It strengthens the construction ✓ so that the struts can carry the weight of the roof. ✓ | (3) | | | 2.1.4 | Paint with a liquid and insect repellent ✓/retardant preservative. (Creosote) ✓ | (2) | | 2.2 | 2.2.1 | Within 3 months cement will lose 20% of its strength ✓and 40% after 6 months.✓ | (2) | | | 2.2.2 | Cement must always be stored in a dry place free of moist. ✓ Plastic can be used to cover the cement packs ✓ so that the cement is protected against moisture. ✓ Cement bags must be stored on wooden planks ✓ to prevent moisture/damp from the floor, damaging the cement. ✓ | (5) | | | 2.2.3 | Building sand consists of particles between 0, 1 mm and 5 mm in size. ✓ Sand must be free from dust, clay, silt or organic material such as leaves and grass etc. ✓ Sand derived from shale or slates must be avoided. ✓ Building sand must have enough lime to allow the bricklayer to place the brick in position, before drying out. ✓ | (4) | | | 2.2.4 | Shale/ slates/lime/ sandstone must be avoided. ✓ | (1) | | 2.3 | 2.3.1 | Stretcher bond. ✓ | (1) | | | 2.3.2 | Put damp proof course (DPC) waterproofing ✓ between the foundation and the first brick layer. ✓ | (2) | | | 2.3.3 | Galvanised steel wire or brick force ✓ can be laid on every third layer of bricks. ✓ | (2) | | 2.4 | 2.4.1 | The adhesive itself should not distort, melt or burn when heated. ✓ | (1) | | | 2.4.2 | When placed in humid conditions, a water resistant adhesive should be used to make a joint. ✓ | (1) | | | 2.4.3 | If we want to join elastic materials, we would use an adhesive, which would still be elastic after it has dried out. ✓ | (1) | - 2.4.4 The adhesive should be able to withstand mass, weight, load or tension. ✓ (1) - 2.4.5 Adhesive should be resistant to open flames. ✓ (1) - 2.5 Catalyst and accelerator should always be stored separately.(Explosion) ✓ - Remove all resin catalyst and accelerator from skin. ✓ - Wear gloves if skin is sensitive. ✓ - Use acetone in well ventilated room. ✓ - Handle resin casting carefully, they are brittle. ✓ - Glass fibre matting has small pieces of fibre that can penetrate the skin. - Don't breath in glass fibre or allow it to get it in your eyes. (Any 5) (5) [35] #### **QUESTION 3: ENERGY** | 3.1 | 3.1.1 | Photo voltaic cell.✓ | (1) | |-----|-------|---|--------------------| | | 3.1.2 | Solar power technology is limitless. ✓ Environment friendly. ✓ It is extremely portable (easy to relocate). ✓ Can create more energy than is necessary for a single family's needs. ✓ Extra power from the solar panels can be fed back into the power grid providing, clean and free energy to people throughout an entire settlement. ✓ | (5) | | | 3.1.3 | Inverter / transformer.✓ | (1) | | | | | | | 3.2 | 3.2.1 | Wind turbine.✓ | (1) | | | 3.2.2 | It converts the kinetic energy present in wind into mechanical energy and then into electrical energy. ✓ The blades are shaped like an aeroplane wing to make the most of the prevailing wind. ✓ The turning motion is then transferred to the turbine rotor through gears, ✓ causing the turbine to generate the electricity. ✓ | (4) | | | 3.2.3 | Unreliable wind factor. ✓ Normally produces a lot less electricity than the average fossil fuelled power station. Multiple wind turbines must be erected to make an impact. ✓ The construction of these wind turbines can be very expensive and costly to the wildlife in the vicinity. ✓ Commercial wind turbines are very noisy. ✓ Protests and/or petitions usually confront any proposed wind farm. People believe the countryside should be kept intact to enjoy. (Any 4) | (4) | | 3.3 | • | Low cost because it is made of plant and animal waste. ✓ Biodegradable and do not harm the environment when combusted. ✓ A lot less polluting – environment friendly. ✓ Conventional fuels takes years to regenerate not so for bio fuels. ✓ Do not require radical changes to switch to using bio fuels. Is a renewable source of energy. Ethanol is very inexpensive to produce. | | | | • | Can help prevent engine knocking. (Any 4) | (4)
[20] | (3) | QUESTION 4: | SKILLS AND CONSTRUCTION PROCESSES | | | |-------------|---|-----|--| | 4.1 4.1.1 | MIG or CO₂ welding.✓ | (1) | | | 4.1.2 | Preventing the welding bead to come into contact with oxygen during welding.✓ | (1) | | | 4.1.3 | The wire melts to form the joint ✓ between the two metals one want to join. ✓ | (2) | | | 4.1.4 | The filler wires gets too short. ✓ Use anti spatter or spatter release spray. ✓ | (2) | | | 4.1.5 | High alloy steel. (stainless alloys) ✓ Aluminium. ✓ Mild steel. ✓ | (3) | | | 4.2 4.2.1 | Inverter uses a much smaller transformer than traditional arc welders. More compact, portable, lightweight. ✓ Consume less power/use less current. ✓ Cheaper to manufacture. ✓ An inverter welder produces a smoother arc when welding. ✓ Computer software constantly monitors and adjusts current and voltage during the welding process, resulting in a consistent arc. ✓ Welding supplies such as electrodes, welding wire and shielding gas typically last longer than when using a traditional welding power supply. Adjustments to current and voltage can be made to accommodate differences in material composition and thickness, giving the welder tighter control over the welding process. It is possible to use an inverter welder to power all welding processes including Stick-, Metal Inert Gas- (MIG), Tungstenand Inert Gas (TIG) welding. | (5) | | | 4.2.2 | A rectifier converts the incoming AC (alternating current) into DC (direct current). ✓ This current is then switched on and off very quickly, ✓ creating a pulsed high frequency direct current. ✓ The high frequency, low-amperage current ✓ is fed into a transformer when it is charged into high amperage direct current, before being rectified again. ✓ | (5) | | | 4.2.3 | Welding helmet. ✓ Welding gloves (leather). ✓ Welding apron (leather). ✓ Welding spats. Welding overall. | (0) | | | | • Wolding boots | (2) | | 4.2.4 CO₂✓ (1) Copyright reserved Please turn over Welding boots. DBE/Feb.-Mar. 2014 4.3 4.3.1 a - Longitudinal shrinking. ✓ b - Angular shrinking longitudinally. ✓ - c Angular shrinking. ✓ - d Lateral shrinking. ✓ (4) - 4.3.2 Duration of welding being done. ✓ - Number of welding runs. - Degree of resistance. - Original state or condition of material that must be welded.✓ - Welding procedure. (5) - Tack the prepared work pieces together. Lean the electrode in the direction of travel and point it slightly upwards. - Strike an arc and run a bead along the joint.✓ - Shorten the arc length and increase the upward angle of the electrode if the force of the arc tends to undercut the work piece at the top of the bead. ✓ (3) [35] #### **QUESTION 5: TOOLS, IMPLEMENTS AND EQUIPMENT** | 5.1 | 5.1 | 1 1 | |------|-----|-----| | J. I | J. | | | V-BELTS | FLAT BELTS | |--|---| | Draw tighter around pulleys when tension increases.✓ | Easily installed or taken off. ✓ | | Are relatively strong, and under normal circumstances do not break easily. ✓ | Used over a long distance. ✓ | | Do not stretch or shrink in any type of weather. ✓ | Easily lengthened or shortened. | | Last longer than flat belts.✓ | Easily joined.✓ | | Do not easily slip off pulleys. ✓ | Used with ease to run over a pulley situated between two bearings without removing the bearings.✓ | (10) 5.1.2 Formula: Na X Da = Ng X Dg Na = $\frac{\text{Ng x Dg}}{\text{Ng}}$ a – <u>ing x L</u> Da Na = $\frac{4000 \times 150}{300}$ Na = 2000 ✓ r/min ✓ (5) (4) - 5.2 5.2.1 Check if the anchor bolts of the static machine are tight. ✓ - Check that the universal joints are well lubricated. ✓ - Check that the driving shaft guard is present and without cracks. ✓ - Ensure that the driving shaft is as straight as possible and fully coupled.✓ - 5.2.2 Do not work on the machine while it is still in motion. ✓ - Ensure that there are no loose objects lying inside the machine when starting it. ✓ - Wear safety goggles. ✓ - Do not use the machine when the rotor is out of balance. ✓ - The driving mechanism must be screened off. ✓ - Use in a well-ventilated area. ✓ - Small pieces of scrap metal must be kept away from fodder. It can cause a spark, which can start a fire. (Any 6) - 5.2.3 Regular lubrication. ✓ - Hammers should be replaced with the correct type. ✓ - Hammer mill must be correctly anchored. ✓ - PTO coupling done correctly. ✓ - Clean after each job. - Sieves and screens inspected on a regular base. (Any 4) 5.3 5.3.1 - The piston-type pump is driven off the tractor's engine ✓ and creates a high oil pressure in that part of the system between the pump and the control valve. ✓ - The moment the operator moves the control valve plunger to the right, ✓ the oil under pressure flows via the non-return valve to the cylinder and the piston and shaft are forced in the out direction. ✓ - When the control valve is moved into the opposite direction, ✓ a small hole in the control valve is exposed, allowing the oil to return to the oil tank through the same pipe. ✓ - The weight ✓ of the implement forces the piston to return to its original position. (8) - 5.3.2 Straight-cut gear (Spur gear). ✓ - Helical gear.√ - Double helical gear (Herringbone gear). (3) **[40]** (10) (8) #### **QUESTION 6: WATER MANAGEMENT** 6.1 6.1.1 Marks will be allocated for: Correctness. ✓✓✓✓ Labelling. ✓✓✓✓ Neatness. ✓✓ - 6.1.2 The incoming effluent will be diverted downward with a minimum of splashing, ✓ allowing the solids to sink to the bottom. ✓ - When the water level rises high enough ✓ it flows over the dividing wall into the second compartment. ✓ - When water rises high enough in the second compartment, it will flow out at the outlet pipe at the top part of the compartment√ and seep away into the soil. √ - The bacteria will break down the solid waste ✓during the process and therefore rehabilitated water will drain from the outlet, while solids stay longer to be broken down completely. ✓ - 6.1.3 Near boreholes. ✓ - Drinking water installations. ✓ - Near the house. A suitable distance away from the house. ✓ - Near traffic. ✓ - Where people eat, wash or work regularly. (Any 4) - 6.2 Pressure high enough to satisfy needs. ✓ - Prevent spillage. ✓ - Joints watertight. ✓ - Removal of spillage water. ✓ - Protect all valves. 6.3 • For correct calibrating of the sprayers. ✓ • Effective scheduling of irrigation. ✓ To prevent the over utilisation of the water source. ✓ (3) [**30**] TOTAL SECTION B: 160 GRAND TOTAL: 200 Copyright reserved