

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS P2

NOVEMBER 2016

MARKS: 150

TIME: 3 hours

This question paper consists of 13 pages and a 22-page answer book.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 12 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs et cetera that you used to determine the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 8. Write neatly and legibly.

NSC - Grade 11

QUESTION 1

The table below shows the number of cans of food collected by 9 classes during a charity drive.

	5	8	15	20	25	27	31	36	75
L									

- 1.1 Calculate the range of the data. (1)
- 1.2 Calculate the standard deviation of the data. (2)
- 1.3 Determine the median of the data. (1)
- 1.4 Determine the interquartile range of the data. (3)
- 1.5 Use the number line provided in the ANSWER BOOK to draw a box and whisker diagram for the data above. (3)
- 1.6 Describe the skewness of the data. (1)
- 1.7 Identify outliers, if any exist, for the above data. (1)

QUESTION 2

The table below shows the time (in minutes) that 200 learners spent on their cellphones during a school day.

TIME SPENT (IN MINUTES)	FREQUENCY
$95 < x \le 105$	15
$105 < x \le 115$	27
$115 < x \le 125$	43
$125 < x \le 135$	52
$135 < x \le 145$	28
$145 < x \le 155$	21
$155 < x \le 165$	10
$165 < x \le 175$	4

- 2.1 Complete the cumulative frequency column in the table provided in the ANSWER BOOK.
- 2.2 Draw a cumulative frequency graph (ogive) of the data on the grid provided. (3)
- 2.3 Use the cumulative frequency graph to determine the value of the lower quartile. (2)
- 2.4 Determine, from the cumulative frequency graph, the number of learners who used their cellphones for more than 140 minutes.

Copyright reserved Please turn over

(2) [**9**]

(2)

[12]

In the diagram, A(6; -2), B(2; 15) and C(-4; 3) are the vertices of \triangle ABC. M is the midpoint of AB. N is a point on CA such that MN || BC.

- 3.1 Determine the coordinates of M, the midpoint of AB. (2)
- 3.2 Determine the gradient of line MN. (3)
- 3.3 Hence, or otherwise, determine the equation of line MN, in the form y = mx + c. (2)
- 3.4 Calculate, with reasons, the coordinates of point N. (4)
- 3.5 If ABCD (in that order) is a parallelogram, determine the coordinates of point D. (4)
 [15]

In the diagram, R and A are the x- and y-intercepts respectively of the straight line AR. The equation of AR is $y = -\frac{1}{2}x + 4$. Another straight line cuts the y-axis at P(0; 2) and passes through the points M(k; 0) and N(3; 4).

 α and β are the angles of inclination of the lines MN and AR respectively.

- 4.1 Given that M, P and N are collinear points, calculate the value of k. (3)
- 4.2 Determine the size of θ , the obtuse angle between the two lines. (4)
- 4.3 Calculate the length of MR. (3)
- 4.4 Calculate the area of Δ MNR. (3)

[13]

In the diagram below, P(-8; t) is a point in the Cartesian plane such that OP = 17 units and reflex $X\hat{OP} = \theta$.

- 5.1.1 Calculate the value of t. (2)
- 5.1.2 Determine the value of each of the following WITHOUT using a calculator:

(a)
$$\cos(-\theta)$$
 (2)

(b)
$$1-\sin\theta$$
 (2)

5.2 If $\sin 17^\circ = a$, WITHOUT using a calculator, express the following in terms of a:

$$5.2.1 tan 17^{\circ}$$
 (3)

$$5.2.2 \sin 107^{\circ}$$
 (2)

$$5.2.3 \qquad \cos^2 253^\circ + \sin^2 557^\circ \tag{4}$$

5.3 Simplify fully, WITHOUT the use of a calculator:

$$\frac{\cos(-225^{\circ}).\sin 135^{\circ} + \sin 330^{\circ}}{\tan 225^{\circ}}$$
 (6)

Prove the identity:
$$\frac{1}{(\cos x + 1)(\cos x - 1)} = \frac{-1}{\tan^2 x \cdot \cos^2 x}$$
 (4)

5.5 Determine the general solution for
$$2\sin x \cdot \cos x = \cos x$$
. (6) [31]

In the diagram the graphs of $f(x) = \cos x$ and $g(x) = \sin(x+b)$ are drawn for the interval $-180^{\circ} \le x \le 90^{\circ}$.

6.1 Write down the value of b.

(1)

6.2 Write down the period of g.

(1)

6.3 Write down the value(s) of x in the interval $-180^{\circ} \le x \le 90^{\circ}$ for which f(x) - g(x) = 0. (2)

6.4 For which values of x in the interval $-180^{\circ} \le x \le 90^{\circ}$ is $\sin(90^{\circ} - x) > g(x)$? (3)

The graph of h is obtained by shifting f 3 units upwards. Determine the range of h. (2)

[9]

7.1 In the figure below, acute-angled \triangle ABC is drawn having C at the origin.

7.1.1 Prove that
$$c^2 = a^2 + b^2 - 2ab\cos C$$
. (6)

7.1.2 Hence, deduce that
$$1 + \cos C = \frac{(a+b+c)(a+b-c)}{2ab}$$
 (4)

Quadrilateral ABCD is drawn with $BC = 235 \,\text{m}$ and $AB = 90,52 \,\text{m}$. It is also given that $A\hat{D}B = 31,23^{\circ}$; $D\hat{A}B = 109,16^{\circ}$ and $C\hat{B}D = 48,88^{\circ}$.

Determine the length of:

The diagram below shows a water tank which is made up of a cylinder and cone having equal radii. The height of the tank is 1,8 m and the radius is 0,5 m. The angle between the perpendicular height, AB, and the slant height, AC, of the conical section is 35,5°.

Volume of cone = $\frac{1}{3}\pi r^2 h$

Total surface area of cone = $\pi r^2 + \pi r s$

Volume of cylinder = $\pi r^2 h$

Total surface area of cylinder = $2\pi r^2 + 2\pi r h$

- 8.1 Calculate the perpendicular height, AB, of the cone.
- When the tank is full, an electric pump switches on and pumps the water from the tank into an irrigation system at a rate of $0.52 \text{ m}^2/\text{h}$. The pump automatically switches off when the tank is $\frac{1}{4}$ full.

Calculate how long, in hours, the pump feeds water into the irrigation system. (4)

[6]

(2)

Give reasons for your statements and calculations in QUESTIONS 9, 10, 11 and 12.

QUESTION 9

9.1 Complete the statement so that it is TRUE:

The angle subtended by an arc at the centre of a circle is ...

(2)

9.2 O is the centre of circle TNSPR. $POS = 60^{\circ}$ and PS = NT.

Calculate the size of:

9.2.1 PRS (2)

9.2.2 $N\hat{S}T$ (2)

[6]

D, E, F, G and H are points on the circumference of the circle. $\hat{G}_1 = x + 20^{\circ}$ and $\hat{H} = 2x + 10^{\circ}$. DE | | FG.

11

Determine the size of $D\hat{E}G$ in terms of x. 10.1 (2)

Calculate the size of DHG. (4) 10.2 **[6]**

O is the centre of the circle PTR. N is a point on chord RP such that $ON \perp PR$. RS and PS are tangents to the circle at R and P respectively.

RS = 15 units; TS = 9 units; $R\hat{P}S = 42,83^{\circ}$.

11.1 Calculate the size of NÔR. (5)

11.2 Calculate the length of the radius of the circle. (4)

[9]

Mathematics/P2 13 NSC - Grade 11

QUESTION 12

Use the diagram below to prove the theorem which states that $\, \hat{EFG} = \hat{EDF}.$ 12.1

(5)

12.2 In the diagram below, BOC is a diameter of the circle. AP is a tangent to the circle at A and AE = EC.

Prove that:

(4) BA | OD 12.2.1

(5) 12.2.2 AOCD is a cyclic quadrilateral

(4) 12.2.3 DC is a tangent to the circle at C

> **TOTAL:** 150

[18]