Hierdie vraestel bestaan uit 18 bladsye en 'n 2 bladsy-inligtingsblad.
INSTRUKSIES EN INLIGTING

Lees die volgende instruksies noukeurig deur voordat die vrae beantwoord word.

1. Hierdie vraestel bestaan uit 11 vrae.

2. Beantwoord AL die vrae in die SPESIALE ANTWOORDEBOEK wat verskaf word.

3. Dui ALLE berekeninge, diagramme, grafieke, ens., wat jy gebruik het om jou antwoorde te bepaal, duidelik aan.

4. Volpunte sal NIE noodwendig aan slegs antwoorde toegeken word NIE.

5. Indien nodig, rond antwoorde tot TWEE desimale plekke af, tensy anders vermeld.

6. Diagramme is NIE noodwendig volgens skaal geteken NIE.

7. Jy mag 'n goedgekeurde, wetenskaplike sakrekenaar (nieprogrammeerbaar en niegrafies) gebruik, tensy anders vermeld.

8. 'n Inligtingsblad met formules is aan die einde van hierdie vraestel ingesluit.

VRAAG 1

In die diagram hieronder word ΔRST met hoekpunte R(4 ; 3), S(1 ; 0) en T(5 ; −4) gegee. Die inklinasiehoek van RS met die positiewe x-as is θ.

1.1 Bepaal die gradiënt van RS.

1.2

1.2.1 Skryf die formule neer wat benodig word om die inklinasiehoek van 'n lyn te bereken.

1.2.2 Bepaal vervolgens die waarde van θ

1.3 Bereken die lengte van RT in vereenvoudigde wortelvorm.

1.4 Bepaal die koördinate van die middelpunt van ST.
1.5 'n Lyn word parallel aan RS getrek wat deur die middelpunt van ST gaan.

1.5.1 Voltooi die stelling:

As twee lyne parallel is, dan is hulle gradiënte … (1)

1.5.2 Bepaal vervolgens die vergelyking van die lyn parallel aan RS wat deur die middelpunt van ST gaan, in die vorm \(y = \ldots \) (3)
VRAAG 2

2.1 In die diagram hieronder is O die middelpunt van beide die kleiner en die groter sirkels.
RQ is 'n raaklyn aan die kleiner sirkel by punt P(1; -2).
AC is 'n raaklyn aan die groter sirkel by punt B met C(5; -3).
RQ || AC

2.1.1 Bepaal die vergelyking van die kleiner sirkel. (2)
2.1.2 Skryf die gradiënt van OP neer. (1)
2.1.3 Gee 'n rede waarom OP loodreg op RQ is. (1)
2.1.4 Bepaal vervolgens die gradiënt van AC. (2)
2.1.5 Bepaal vervolgens die vergelyking van AC in die vorm \(y = \ldots \) (3)
2.2 Gegee: \(\frac{x^2}{36} \frac{y^2}{16} = 1 \)

2.2.1 Druk die vergelyking in die vorm \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) uit. \((1) \)

2.2.2 Skets vervolgens die grafiek gedefinieer deur \(\frac{x^2}{36} \frac{y^2}{16} = 1 \) \((2) \)

[12]
VRAAG 3

3.1 Gegee: \(\hat{p} = \frac{2}{7} \pi \) en \(\hat{Q} = 37^\circ \)

3.1.1 Herlei \(\frac{2}{7} \pi \) na grade.

(1)

3.1.2 Bepaal die waarde van cosec \(P - \cos Q \).

(2)

3.2 In die diagram hieronder is \(OA = 3 \) eenhede en \(A(-\sqrt{5} ; k) \) is 'n punt op die Cartesiese vlak. Die inklinasiehoek van \(OA \) met betrekking tot die positiewe \(x \)-as is \(\theta \).

Bepaal, sonder die gebruik van 'n sakrekenaar, die numeriese waarde van:

3.2.1 \(k \)

(3)

3.2.2 \(\sqrt{5} \cot \theta + 1 \)

(3)

3.3 Bepaal die waarde(s) van \(x \) as \(3 \tan x = -0,531 \) en \(x \in [0^\circ; 360^\circ] \).

(4)

[13]
VRAAG 4

4.1 Vereenvoudig die volgende:

4.1.1 \(\sin(360^\circ - \alpha) \) \hspace{1cm} (1)

4.1.2 \(\tan^2(\pi - \alpha) \) \hspace{1cm} (2)

4.1.3 \(\frac{\sin(360^\circ - \alpha) \cdot \tan(180^\circ - \alpha) \cdot \cosec(2\pi - \alpha)}{\cos(360^\circ + \alpha) \cdot \cosec(180^\circ - \alpha) \cdot \tan^2(\pi - \alpha)} \) \hspace{1cm} (6)

4.2 Voltooi die identiteit: \(1 - \sin^2 x = \ldots \) \hspace{1cm} (1)

4.3 Bewys die identiteit dat: \(\cosec x - \sin x = \cot x \cdot \cos x \) \hspace{1cm} (4)

VRAAG 5

Gegee die funksies gedefinieer deur \(f(x) = \sin(x + 30^\circ) \) en \(g(x) = \cos x \) vir \(x \in [0^\circ; 360^\circ] \)

5.1 Skryf neer:

5.1.1 Die periode van \(g \) \hspace{1cm} (1)

5.1.2 Die amplitude van \(f \) \hspace{1cm} (1)

5.2 Teken 'n sketsgrafiek van \(f \) en \(g \) op dieselfde assestelsel op die rooster wat in die ANTWOORDEBOEK verskaf word. Dui duidelik AL die draaipunte, eindpunte en afsnitte met die asse aan. \hspace{1cm} (7)

5.3 Gebruik die grafiek in VRAAG 5.2 om die waarde(s) van \(x \) neer te skryf waarvoor die grafiek van \(g \) stygend is. \hspace{1cm} (2)
VRAAG 6

In die diagram hieronder is BDC 'n reguitlyn met BD = DC = 7,44 cm
\(\hat{B} = 39,5^\circ \) en \(\hat{A}DC = 74,5^\circ \)

6.1 Bepaal die grootte van:

6.1.1 \(\hat{B} \hat{A}D \)

6.1.2 \(\hat{A} \hat{D}B \)

6.2 Beskou \(\triangle ABD \).

6.2.1 Voltooi die volgende met betrekking tot \(\triangle ABD \):

\[
\frac{...}{\sin \hat{B} \hat{D} A} = \frac{BD}{...} \quad (1)
\]

6.2.2 Bepaal vervolgens die lengte van \(AB \).

(2)

6.3 Bereken vervolgens die lengte van \(AC \).

(3)

6.4 Bepaal die oppervlakte van \(\triangle ABC \).

(3) [11]
Gee redes vir jou bewerings in VRAAG 7, 8 en 9.

VRAAG 7

7.1 Vul die ontbrekende woord(e) in die volgende stelling in:

Die … van 'n koord gaan deur die middelpunt van die sirkel.

(1)

7.2 In die diagram hieronder is AC en AE koorde van die sirkel met middelpunt O. Middellyn ED is loodreg op AC by F. ED = 34 cm, FD = 8 cm en AC = 30 cm

Bepaal, met redes, die lengte van AE.

(5)

[6]
VRAAG 8

8.1 Voltooi die volgende stelling:

Die buitenoek van 'n koordevierhoek is gelyk aan die …

\[\hat{N} = 22^\circ, \quad \hat{B}_1 = 30^\circ \quad \text{en} \quad \hat{A}_1 = 66^\circ. \]

8.2 In die diagram hieronder is ABCD 'n koordevierhoek. Hoeklyne BD en AC sny by M. Koorde BC en AD verleng, sny by N sodanig dat \(\hat{N} = 22^\circ, \hat{B}_1 = 30^\circ \) en \(\hat{A}_1 = 66^\circ. \)

8.2.1 Bepaal, met redes, die grootte van die volgende hoekte:

(a) \(\hat{A}_2 \)

(b) \(\hat{C}_1 \)

(c) \(\hat{C}_3 \)

8.2.2 Toon, met redes, dat die vierhoek MCND nie 'n koordevierhoek is nie.
8.3 In die diagram hieronder is \(O \) die middelpunt van sirkel \(ABEC \).
Raaklyne \(TB \) en \(TC \) raak die sirkel by \(B \) en \(C \) onderskeidelik sodat \(\angle T = 60^\circ \).
Radiusse \(OB \) en \(OC \) word getrek.

8.3.1 Skryf neer, met redes, TWEE hoeke elk gelyk aan \(90^\circ \). \(\hat{A} \)

8.3.2 Bepaal, met redes, die grootte van die volgende hoeke:

(a) \(\hat{A} \)

(b) \(\hat{E} \) [18]
VRAAG 9

9.1 Voltooi die volgende stelling:

'n Lyn parallel getrek aan een sy van 'n driehoek, verdeel die ander twee sye ...

9.2 Die diagram hieronder toon ΔABC met punte D, E en F op sye AB, AC en BC onderskeidelik. DEFB is 'n parallelogram.
AE = 31 cm, EC = 48 cm, BD = 44 cm en FC = 55 cm.

9.2.1 Indien DE || BF en BD || FE, noem enige TWEE ANDER eienskappe van die parallelogram.

9.2.2 Bepaal, met redes, die lengte van AD.

9.2.3 Bepaal die lengte van DE.
9.3 In die diagram hieronder is BE 'n raaklyn aan sirkel BCF by punt B. Koord CF verleng, ontmoet BE by punt E sodat BE = 7 cm en FE = 5 cm.

9.3.1 Bewys dat \(\triangle EBF \parallel \triangle ECB \).

9.3.2 Lei vervolgens af dat \(EB^2 = EC \times EF \)

9.3.3 Bepaal die lengte van CF.

\[\text{[17]} \]
VRAAG 10

10.1 Hieronder is 'n prentjie van 'n laer ('bearing'). Die diagram onder die prentjie beeld die laer met 'n buitemiddellyn van 32 mm en 'n binnemiddellyn van 12 mm uit. O is die middelpunt van die sirkels. P, M en R is punte op die omtrek van die groter sirkel. PR is 'n koord van die buitesirkel en is 'n raaklyn aan die binnesirkel by punt T. TM is die hoogte van segment PMR.

Bepaal:

10.1.1 Die omtreksnelheid (in meter per seconde) van 'n partikel by punt M op die laer wanneer dit teen 5 000 revolusies per minuut roteer

10.1.2 Die lengte, in millimeter, van koord PR
10.2

- Die prentjie en die diagram hieronder toon 'n band wat kruis by punt B om twee katrolle met middelpunte F en G wat 500 mm weg van mekaar is.
- Die kleiner katrol is aan 'n motor verbind.
- Soos wat die kleiner katrol, met middelpunt F en 'n radius van 50 mm roteer, veroorsaak dit dat die groter katrol, met middelpunt G en 'n radius van 130 mm, in die teenoorgestelde rigting roteer.
- Reflekse $\hat{A}FE = 222^\circ$
- $AB = 30\sqrt{19}$ mm

Die diagram toon die twee parallele katrolle.

10.2.1 Herlei 222° na radiale.

10.2.2 Bereken die oppervlakte van hoofsektor AE.

10.2.3 Bepaal die totale lengte van die gekruiste band as die lengte van hoofboog CD 503 mm is.
VRAAG 11

11.1 'n Boer het 'n onregelmatige stuk grond op sy plaas wat hy wil gebruik. Hy bepaal dat een reguit kant van die grond 1,2 km lank is.

Hy verdeel die reguit kant van die grond in vier gelyke segmente, wat vyf verskillende lengte-ordinate, 7,72 m, 5,32 m, q, 4,36 m en 6,72 m tot gevolg het, soos in die diagram hieronder getoon.

11.1.1 Herlei 1,2 km na meter. (1)

11.1.2 Indien die oppervlakte van die onregelmatige stuk grond 6 948 m2 is, bepaal die numeriese waarde van q. (5)
11.2 'n Brandstofstasie gebruik 'n horisontale regte silindriese tenk om brandstof ondergronds te stoor.
Die stoortenk word gevul om op die meeste 68 m\(^3\) brandstof te bevat (FIGUUR A).
Die brandstof tenk van 'n motor word gevul om op die meeste 52 liter brandstof te bevat (FIGUUR B).

- Die hoogte van die silindriese stoortenk is 10 m en die radius is 1,5 m.
- Die kapasiteit van die regte silindriese stoortenk is 70,69 m\(^3\)
- Die kapasiteit van die motor se brandstof tenk is 55 liter.

FIGUUR A

![Diagram of a horizontal cylindrical tank](image)

\[V = 70,69 \text{ m}^3 \]

FIGUUR B

![Diagram of a car's fuel tank](image)

\[V = 55 \text{ liter} \]

Totale buite-oppervlakte (area) van 'n geslote regte silinder = \(2\pi r^2 + 2\pi rh\)

Volume van 'n regte silinder = \(\pi r^2h\)

11.2.1 Die regte silindriese stoortenk word met spesiale materiaal bedek om lekkasie te voorkom. Die materiaal wat gebruik word, kos R8,93 per vierkante meter.

Toon dat die koste van die materiaal wat gebruik word om die regte silindriese tenk mee te bedek, nie R1 000 sal oorskry nie. \(4\)

11.2.2 Die regte silindriese stoortenk en die motorbrandstof tenk het lugspasie wanneer dit tot die gegee kapasiteit gevul word.

Bepaal watter EEN van die tenks 'n groter persentasie lugspasie sal hê. \(5\)

[15]

TOTAAL: 150
INLIGTINGSBLAD: TEGNIESE WISKUNDE

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \quad x = \frac{-b}{2a} \quad \quad y = \frac{4ac - b^2}{4a} \]

\[a^x = b \Leftrightarrow x = \log_a b, \quad a > 0, \; a \neq 1 \text{ en } b > 0 \]

\[A = P(1 + ni) \quad A = P(1 - ni) \quad A = P(1 + i)^n \quad A = P(1 - i)^n \]

\[i_{\text{eff}} = \left(1 + \frac{i}{m}\right)^m - 1 \]

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

\[\int k x^n \, dx = \frac{k x^{n+1}}{n+1} + C, \quad n, k \in \mathbb{R} \text{ waar } n \neq -1 \text{ en } k \neq 0 \]

\[\int_{x}^{} k x \, dx = k \ln x + C, \quad x > 0 \text{ en } k \in \mathbb{R}; \quad k \neq 0 \]

\[\int k a^{ax} \, dx = \frac{k a^{ax}}{a} + C, \quad a > 0; \ a \neq 1 \text{ en } k, a \in \mathbb{R}; \ k \neq 0 \]

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad \quad M\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right) \]

\[y = mx + c \quad y - y_1 = m(x - x_1) \quad \quad m = \frac{y_2 - y_1}{x_2 - x_1} \quad \quad \tan \theta = m \]

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

\[\text{In } \triangle ABC: \quad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \quad \quad a^2 = b^2 + c^2 - 2bc \cdot \cos A \]

\[\text{oppervlakte van } \triangle ABC = \frac{1}{2} ab \cdot \sin C \]

\[\sin^2 \theta + \cos^2 \theta = 1 \quad 1 + \tan^2 \theta = \sec^2 \theta \quad 1 + \cot^2 \theta = \csc^2 \theta \]
\[\pi \text{ rad} = 180^\circ \]

Hoeksnellheid = \(\omega = 2 \pi n \) \(n = \) rotasiefrekwensie

Hoeksnellheid = \(\omega = 360^\circ n \) \(n = \) rotasiefrekwensie

Omtrekssnelheid = \(v = \pi D n \) \(D = \) middellyn en \(n = \) rotasiefrekwensie

Omtrekssnelheid = \(v = \omega r \) \(\omega = \) hoeksnellheid en \(r = \) radius

Booglengte = \(s = r\theta \) \(r = \) radius en \(\theta = \) sentrale hoek in radiale

Oppervlakte van 'n sektor = \(\frac{rs}{2} \) \(r = \) radius, \(s = \) booglengte

Oppervlakte van 'n sektor = \(\frac{r^2 \theta}{2} \) \(r = \) radius en \(\theta = \) sentrale hoek in radiale

\[4h^2 - 4dh + x^2 = 0 \] \(h = \) hoogte van segment, \(d = \) middellyn van sirkel en \(x = \) lengte van koord

\[A_T = a\left(m_1 + m_2 + m_3 + \ldots + m_n\right) \] \(a = \) aantal gelyke dele, \(m_i = \frac{o_1 + o_2}{2} \)

\[O_n = n^{de} \text{ ordinaat en } n = \text{antal ordinate} \]

OF

\[A_T = a\left(\frac{o_1 + o_n}{2} + o_2 + o_3 + \ldots + o_{n-1}\right) \] \(a = \) aantal gelyke dele, \(o_n = n^{de} \text{ ordinaat} \) en \(n = \text{antal ordinate} \)