THE EDUCATION & E

Department: Basic Education REPUBLIC OF SOUTH AFRICA

FOREWORD

The Department of Basic Education has pleasure in releasing a subject exemplar booklet for School Based Assessment (SBA) to assist and guide teachers with the setting and development of standardised SBA tasks and assessment tools. The SBA booklets have been written by teams of subject specialists to assist teachers to adapt teaching and learning methods to improve learner performance and the quality and management of SBA.

The primary purpose of this SBA exemplar booklet is to improve the quality of teaching and assessment (both formal and informal) as well as the learner's process of learning and understanding of the subject content. Assessment of and for learning is an ongoing process that develops from the interaction of teaching, learning and assessment. To improve learner performance, assessment needs to support and drive focused, effective teaching.

School Based Assessment forms an integral part of teaching and learning, its value as a yardstick of effective quality learning and teaching is firmly recognised. Through assessment, the needs of the learner are not only diagnosed for remediation, but it also assists to improve the quality of teaching and learning. The information provided through quality assessment is therefore valuable for teacher planning as part of improving learning outcomes.

Assessment tasks should be designed with care to cover the prescribed content and skills of the subject as well as include the correct range of cognitive demand and levels of difficulty. For fair assessment practice, the teacher must ensure that the learner understands the content and has been exposed to extensive informal assessment opportunities before doing a formal assessment activity.

The exemplar tasks contained in this booklet, developed to the best standard in the subject, is aimed to illustrate best practices in terms of setting formal and informal assessment. Teachers are encouraged to use the exemplar tasks as models to set their own formal and informal assessment activities.

MR'HM MWELI DIRECTOR-GENERAL DATE: 1 3/09 (2017

1

Table of Contents

1.	Introduction							
2.	Aims and objectives							
3.	Assessment Tasks							
4.	Quality Assurance Process							
5.	Cognitive	levels in Mathematical Literacy	4					
6.	Exemplar	SBA Tasks and Memos	6					
6	.1 Grade	e 10 Tasks	7					
	6.1.1 (a)	Assignment 1	7					
	6.1.1 (b)	Assignment 1 Memo	13					
	6.1.2 (a)	Assignment 2	15					
	6.1.2 (b)	Assignment 2 Memo	21					
	6.1.3 (a)	Assignment 3	24					
	6.1.3 (b)	Assignment 3 Memo	30					
	6.1.4 (a)	Investigation 1	34					
	6.1.4 (b)	Investigation 1 Memo	37					
	6.1.5 (a)	Investigation 2	38					
	6.1.5 (b)	Investigation 2 Memo	41					
	6.1.6 (a)	Investigation 3	44					
	6.1.6 (b)	Investigation 3 Memo	46					
6	.2 Grade	e 11 Tasks	50					
	6.2.1 (a)	ASSIGNMENT 1	50					
	6.2.1 (b)	Assignment 1 Memo	54					
	6.2.2 (a)	Assignment 2	56					
	6.2.2 (b)	Assignment 2 Memo	59					
	6.2.3 (a)	Assignment 3	62					
	6.2.3 (b)	Assignment 3 Memo	66					
	6.2.4 (a)	Investigation 1	69					
	6.2.4 (b)	Investigation 1 Memo	72					
	6.2.5 (a)	Investigation 2	76					
	6.2.5 (b)	Investigation 2 Memo	81					
	6.2.6 (a)	Investigation 3	85					
	6.2.6 (b)	Investigation 3 Rubric	90					

6.3 Grad	le 12 Tasks	94
6.3.1 (a)	Assignment 1	94
6.3.1 (b)	Assignment 1 Memo	101
6.3.2 (a)	Assignment 2	106
6.3.2 (b)	Assignment 2 Memo	110
6.3.3 (a)	Assignment 3	114
6.3.3 (b)	Assignment 3 Memo	119
6.3.4 (a)	Investigation 1	123
6.3.4 (b)	Investigation 1 Memo	132
6.3.5 (a)	Investigation 2	136
6.3.5 (b)	Investigation 2 Memo	139
6.3.6 (a)	Investigation 3	142
6.3.6 (b)	Investigation 3 Memo	145

1. Introduction

Assessment in the National Curriculum Statement Grades R – 12 comprises School-Based Assessment for subjects offered in the Further Education and Training Phase (and Practical Assessment Tasks for certain subjects) and a final end-of-year examination.

School-Based Assessment is designed to address the content competencies, skills, values and attitudes of the subject, and to provide learners, parents and teachers with results that are meaningful indications of what the learners know, understand and can do at the time of the assessment.

School-Based Assessment allows for learners to be assessed on a regular basis during the school year and also allows for the assessment of skills that cannot be assessed in a written format, e.g. test or examination. This assessment is a compulsory component for progression and promotion in all the different school phases and includes a variety of assessment methods as contemplated in Chapter 4 of the Curriculum and Assessment Policy Statements. Moderation should ensure that the quality and standard of the School Based Assessment, as contemplated in Chapter 4 of the Curriculum and Policy Statements.

2. Aims and objectives

The purpose of this document is to provide both teachers and learners with a set of qualityassured SBA tasks. This document was also developed with an intention to engage Provincial Education Departments (PEDs) on aspects to be considered when capacitating their teachers on the setting of quality SBA tasks.

This document provides exemplar tasks that are reflecting the depth of Mathematical Literacy curriculum content appropriate for Grades 10, 11 and 12. Every effort has been taken to ensure that the distribution of marks in the tasks is in accordance with the cognitive levels of the taxonomy used in the Mathematical Literacy CAPS document.

3. Assessment Tasks

The exemplar tasks in this booklet include *Assignments* and *Investigations* for Grade 10 - 12. When the Department of Basic Education (DBE) embarked on a nationwide moderation process of SBA tasks, it was discovered that many schools across the country do not follow the requirements and guidelines when setting investigations and assignments. The provincial moderation processes were found to be biased more towards written tests and examinations,

hence discrepancies with respect to quality in investigations and assignments on the one hand and written tests and examinations on the other.

In the context of Mathematical Literacy, an assignment is a well-structured task with clear guidelines and a well-defined outcome. An assignment could provide learners with the opportunity to consolidate a topic or section that has been covered in class, or to apply an approach or method studied in class to a new context, or to revise for tests and/or examinations. Both the content and contexts of the assignment are likely to be familiar to the learner. While the teacher may allocate classroom time to an assignment and supervise the completion, parts of an assignment should also be completed by the learner in his or her own time and/or with the assistance of other learners.

On the other hand, an investigation involves a guided discovery, where learners are led through a process of discovering a particular concept or idea through leading questions. This guided discovery may include the collection of data and/or information to solve a problem.

It is anticipated that PEDs will continue to support schools in the quality assurance of written tests and examinations as a supplement to this document.

4. Quality Assurance Process

It has come to the attention of the Department that there are different moderation practices across provinces and that evidence of moderation of all SBAs and in all Grades is not always available. As such, SBA items in schools are often not compatible with the NSC examination items. Whilst the quality assurance process would involve meeting set standards on a number of criteria, it has been established that there are two main aspects that compromise the quality of tasks in Mathematical Literacy, namely, Context and Language. More focus was placed on these aspects when the tasks were quality assured.

Mathematical Literacy is focused on real context, or at most cleaned context. No contrived context is permissible in the subject. Furthermore, as stated in the Mathematical Literacy CAPS document, 'familiar/unfamiliar' context is to be interpreted in two different ways. Familiar/Unfamiliar with respect to:

- learners' lived experiences (where familiar means learners likely to have had exposure to the context and unfamiliar means learners unlikely to have had exposure to the context (i.e. an experience that has not been lived)
- contexts listed in the CAPS (where familiar refers to those contexts listed in the CAPS and unfamiliar refers to those contexts not listed in the CAPS)

Familiar/Unfamiliar with respect to learners' lived experiences directly influences PROGRESSION in the subject. That is, contexts that are potentially closer to the lived experiences of learners are dealt with in Grade 10; but by Grade 12 the contexts are expanded to cover those that are unfamiliar to the learners' lived experiences.

On the other hand, it is familiar/unfamiliar with respect to contexts listed in the CAPS that directly affect ASSESSMENT. For instance:

Paper 1 is restricted to 'familiar' contexts \rightarrow i.e. those contexts prescribed in CAPS. Paper 2 may contain 'unfamiliar' contexts that are not listed in the CAPS.

The argument here is that including lots of information in contextual scenarios of the tasks does not necessarily increase the taxonomy level complexity of a question. Instead, it makes the context less accessible, which means that learners are not able to access the questions, because they have not been able to interpret the information or the language or the words (and not because they do not understand the concept/skill that is being assessed in the question). It has therefore to be ensured that information is, at all costs, presented in such a manner that it is accessible so learners are given a fair chance to attempt the questions without having to be at a disadvantage because their reading or language skills are not strong.

The quality assurance process of the tasks in this document was in the main influenced by issues raised above. This document is a product of DBE coordinated SBA workshops wherein Mathematical Literacy provincial officials were provided with draft SBA tasks (as working documents) to quality assure and redesign to meet the set standards. As far as circumstances permitted, it was ensured that provinces did not work on their own drafts. The process was thus serving as a capacity building initiative as well.

5. Cognitive levels in Mathematical Literacy

Every effort was taken to ensure that all tasks comply, as much as possible, with the following distribution of marks according to the levels of the Mathematical Literacy taxonomy in formal assessment tasks:

Cognitive Levels	Percentage allocation
Level 1: Knowing	$30\% \pm 5\%$
Level 2: Applying routine procedures in familiar contexts	$30\%\pm5\%$
Level 3: Applying multi-step procedures in a variety of contexts	$20\%\pm5\%$
Level 4:Reasoning and reflecting	$20\%\pm5\%$

In determining the level of complexity and cognitive demand of a task, consideration should be given to the extent to which the task requires the use of integrated content and skills drawn from different topics, the complexity of the context in which the problem is posed, the influence of non-mathematical considerations on the problem, and the extent to which the learner is required to make sense of the problem without guidance or assistance.

6. Exemplar SBA Tasks and Memos

INSTRUCTIONS AND INFORMATION (To apply in all the tasks in the booklet)

- 1. Carefully read the given scenario before answering the questions. **Answer ALL** the questions.
- 2. Number the answers correctly according to the numbering system used in the question paper.
- 3. You may use an approved calculator (non-programmable and non-graphical), unless stated otherwise.
- 4. Show ALL calculations clearly.
- 5. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
- 6. Write neatly and legibly.

6.1 Grade 10 Tasks

6.1.1 (a) Assignment 1

Question 1

1.1 A bank charges 12% simple interest p.a. on cash loans to its clients. Tito has asked for a R10 000 loan amount and has promised to repay the loan over 4 years

1.1.1	Calculate the interest which Tito has to pay on the loan?	(3)
1.1.2	Determine the total amount to be paid back.	(2)
1.1.3	Determine the monthly repayment amount.	(2)
1.2	Tilly wants to deposit money into her banking account at FNB bank: R3,50 + R1,00 per R100 is charged for an over the counter deposit. When ar ATM is used for deposits, R1,00 per R100 (First 2 free per month) is charged for ATM withdrawals at own bank R6,50 +R1,00 per R100 is charged Determine the service fee which Tilly will incur, when:	ו own מאם מ
1.2.1	R700 is deposited over the counter?	(2)
1.2.2	R700 was deposited as follows: R100 on Monday, R200 on Tuesday, and R400 on Saturday during the first week of the month.	(3)

(2)

[14]

QUESTION 2

The table below indicates the bank charges which ABANK uses to provide services to it's customers.

Transaction type			
Monthly Fees			
Monthly account fee	R22 (Current Account)		
	R30 (Silver, Gold, Platinum)		
Deposits			
Cash deposit: Branch counter	R4,85 + 1,15% of deposit value		
Cash deposit: ABANK ATM	R1,10 per R100 (or part thereof)		
	<u>.</u>		
Cash Withdrawals			
Branch Counter	R27,00 + R1,15/R100 (max R500)		
ABANK ATM	R3,85 + R1,10/R100		
Account payments			
ABANK ATM	R3,75 + R0,75/R100		
Branch counter	R33,00		
Debit and stop orders			
Internal	R5,20		
External stop order	R3,75 + R0,75/R100 (max R15,00)		
External debit order	R3,75 + R0,75/R100 (max R25,00)		
Electronic Funds transfer			
ABANK ATM	R3,15		
Branch counter	R33,00		
CASH SEND (ABANK ATM)	R6,90 + R1,05/R100		

- 2.1 Calculate the bank charges if a client wants to send a cash amount of R300 to (2) a friend at an ATM without using a card.
- 2.2 Calculate the bank charges if she makes 3 electronic account payments as follows: paying her R400 rent, R400 electricity bill and a R400 phone bill. (3)

[5]

QUESTION 3

Cell 5 Network has increased their 2015 tariffs for the monthly subscription on the 100 Always-call-U charges of their contract phones. The fixed monthly contract rate will be R100 `with free 100 minutes and then thereafter a call charge will be 50 cents per minute.

3.1.1 Use the graph to complete the following table:

Time, t (minutes)	0	50	100	150	200	250	300
Call charges	0	0	0	25	50	D	E
Amount, A (rand)	Α	100	В	125	150	С	200

(5)

- 3.1.2 Explain why the graph is plotted in a horizontal pattern from 0 to 100 (2) minutes?
- 3.1.3 Give a reason for the graph increasing in a straight line pattern after 100 (2) minutes?
- 3.1.4 The new rate on contract has been arrived at as a result of a 10% increase. (2)Determine the 2014 monthly contract subscription?

3.2 The relationship between John's Dad's petrol cost and people in the car when he travels to work in a car is shown below. He spends R50 when he travels alone. His father approached John for advice on saving on travel. John used the following table:

Number of people in car (n)	1	2	3	4	5
Dad's petrol cost in Rand (C)	50	25	16.67	12.5	10

- 3.2.1 Describe the relationship in words.
- 3.2.2 Draw a graph on a suitable set of axes on Annexure A. (3)

(2)

(2)

- 3.2.3 Is the graph representing a direct or indirect relationship
- 3.2.4 The decision to include a 5th person is not advisable for his dad's condition. (2) Give a reason.
- 3.3 A petrol tanker arrived at John's home to refill the storage tank at their farm.A graph depicting how long it takes to empty the petrol tanker is shown:

3.3.1 Determine the maximum volume of petrol in the tanker? (2)

3.3.2 Determine the volume of the petrol that was left in the tanker after half an hour? (2)

3.3.3	Determine the time it will take the tanker to be half full.	(2)			
3.4	The tanker operator thought that within 1 hour he would have finished				
	emptying the tanker and has scheduled an appointment with another client				
within I hour after the start of emptying the tanker. A penalty of R10 per minut					
	for a late start will be levied				
3.4.1	Justify whether the timing is appropriate or not.	(3)			

3.4.2 Calculate the penalty to be paid.

(3) **[32]** Name of learner:

Class:

ANNEXURE A

Question 3.2.2

6.1.1 (b) Assignment 1 Memo TOTAL 50

Question	Calculation / Description							Explanation		Level
1.1.1	Interest to be p = $P1200 m qx$	aid in or	ne yea	$ar:=\frac{12}{100}$	$\times R1$	0000	M	11	Iultiplication	3
	For 4 years the	 interest	$= 4 \times$	(R1200	na√	́ М		1A	nswer	
								11	Iultiplication	
	= R4800√ A							1A	nswer	
1.1.2	Total amount to be repaid = $R4800 + R10000 \checkmark M$						/ 1Method		2	
	= R14800√ A						1/	nswer		
1.1.3	Monthly repayr	nent = ^R	14800 48	⁄ M = F	308,3	3√ A		1N 1A	lethod Inswer	2
1.2.1.	Cost of depositing over the counter: R3,50 + R1,00 X7 \checkmark M = R10,50 \checkmark A								2	
1.2.2	Monday and Tuesday deposits are free of service fee√J1Justifica 1Method 1AnswerBut R400 will incur cost = R1,00 X 4√M = R4,00√1						ustification lethod Inswer	2		
123	Withdrawal [·] R6	350 + 5	(R1 0	0√ M				1 Method		2
1.2.0	= R11.50√ A	,00 07		0 111				1Answer		-
	,							[14]		
						•	•			
2.1	Cash send cos	t = R6,9 = R10,05	0 + 3 5√ A	X R1.05	5√ M			1N 1A	lethod Inswer	2
2.2	A R400 electronic payment charge is calculated using the following: R3,75 + R0,75/R100 R400 charges will be = R3,75 + R0,75/R100 X R4001 MethodM = R6,75 each Total charges = $3 \times R6,75MA$ 1 CAnswer						1ethod 1A CAnswer	3		
							[5]			
3.1.1	Time, t (minutes)	0	50	100	150	200	250		300	1
	Call charges	0	0	0	25	50	75 🗸		100 🖌	
	Amount, A(in R)	100 🗸	100	100√	125	150	175	\checkmark	200	
	1 for each answer						(5)			

3.1.2	You pay a fixed rate of R100 for calls less than 100 minutes $\mathbf{V} \mathbf{R}$	1Reason	4						
3.1.3	For every minute after 100 minutes the cost 2Reason 4 increases by 50c per minute. \checkmark R This is why the graph increases in a constant linear (straight line) pattern \checkmark R								
3.1.4	R100/1.1√ M = R90.90√ A	1M 1A	2						
3.2.1	Dad's petrol cost is inversely dependant on the number of people in the car $\checkmark \checkmark A$	2A	1						
3.2.2	Relationship between Petrol Co number of people in the ca	st and or 5 6	2						
3.2.3	Indirect/inverse√√A	1Answer	2						
3.2.4	An overload results in an expensive fine or presents a driving risk $\sqrt[]{R}$	2Reason	4						
0.0.4									
3.3.1	1400L√ RG	1Reading from graph	1						
3.3.2	800L√√RG	2 Reading from graph	1						
3.3.3	35 min√√RG	2 Reading from graph	1						
3.4.1	After 1 hour there will still be 200L left in the tank $\checkmark \checkmark J$	2Justification	1						
3.4.2	10min left so penalty will be R10/minX10min√MA = R100√C A	1MA 1CA	2						

6.1.2 (a) Assignment 2

QUESTION 1

50kWh)

(>600kWh)

50 units

Energy Rate(c/kWh) (51 -

Energy Rate(c/kWh) (351 -

350kWh) 300 units

600kWh) 250 units Energy Rate(c/kWh)

ELECTRICITY TARIFFS

1.1 A. ELECTRICITY REDISENTIAL SUPPLY – CONVENTIONAL MSUKALIGWA MUNICIPALITY TARIFF DESIGN MODEL BASED on ESKOM

INCILAGE				
	NERSA	Previous	NERSA	Increased(avg
Posidential Conventional up to	Approved	1ear	Approved	cost and rate)
	2015/2016	2014/2015	2014/2015	
20AMF(EL 122)	2015/2010		2014/2015	
Fixed Charge per month			0 00000	13 67%
Energy Rate(c/kWh) (<= 50kWh)	0 00000	0 00000	0 74400	13 67%
50 units	0,0000	0,74400	0,93000	13,67%
Energy Rate(c/kWh) (51 -	0.80000	0.93000	1.23000	13.67%
350kWh) 300 units	.,	1,23000	1,41500	13,67%
Energy Rate(c/kWh) (351 –	1,02000	1,41500		
600kWh) 250 units				
Energy Rate(c/kWh) (>600kWh)	1,39814			
	1,60843			
	NERSA	Previous	NERSA	increased(avg
Residential Conventional	Approved	Year	Approved	cost and rate)
above 20AMP(EL 102)	Tariff	2014/2015	Tariff	
	2015/2016		2014/2015	
Fixed Charge per month	400.0000	445 00000		40.070/
Energy Rate(c/kwn) (<= 50kwn)	129.03000	115,00000	115,00000	13,67%
50 units Enorgy Pato(c/kWb) (51	0,80000	0,04110	0,74000	13,07%
350kWb) 300 units	1 02000	1,05715	1 23000	13,07%
Energy Rate(c/kWh) (351 –	1,02000	1 39100	1 39100	13,67%
600kWh) 250 units	1 39814	1,00100	1,00100	13,07 /0
Energy Rate(c/kWh) (>600kWh	1.58110			
RESIDENTIAL SUPPLY PRE-PAID	.,			
	NERSA	Previous	NERSA	increased(avg
Residential PRE-PAID up to	Approved	Year	Approved	cost and rate)
20AMP(Indigent Subsidy)	Tariff	2014/2015	Tariff	
	2015/2016		2014/2015	
Fixed Charge per month				
Energy Rate(c/kWh) (<=	0,80000	0,74400	0,84116	13,67%
50kWh) 50 units		0,93000	1,05713	13,67%
Energy Rate(c/kWh) (51 -	1,02000	1,23000	1,39814	13,67%
350kWh) 300 units	1,39814	1,41500	1,60843	13,67%
Energy Rate(c/kWn) (351 –	1,60840			
600KWN) 250 UNITS				
	NERSA	Provious	NERSA	increased/ava
Residential PRF-PAID Above	Annroved	Year	Annroved	cost and rate)
20 AMP	Tariff	2014/2015	Tariff	
	2015/2016		2014/2015	
Fixed Charge per month				
Energy Rate(c/kWh) (<=	129,03000	115,00000	115,00000	13,67%

Msukaligwa Municipality has two types of electricity tariffs; they are a flat rate as well as a pre-paid system rate.

0,80000

1,02000

1,39814

1,58115

0,74000

0,93000

1,23000

1,39100

0,84116 1,05713

1,39814

1,39100

13,67%

13,67%

13,67%

13,67%

1.1 Define the following terms:

1.1.1	Tariff	(2)
1.1.2	Pre- paid tariff	(2)
1.1.3	Flat – rate tariff	(2)

1.2 Mrs Msibi uses a flat - rate system in her house. Study the table below that shows the various tariffs associated with the flat - rate system in Msukaligwa municipality

Service Scale A: Single Phase (40A)	Energy Charge			
Basic charge per month	R 209,44			
(payable whether or not any electricity is used)				
Energy charge per kWh	41,953C			

- 1.2.1 Calculate the basic charge per month on this system? (2)
- 1.2.2 What does the basic charge per month mean/ imply? (2)
- 1.2.3 Determine the charge tariff per unit of electricity used. (2)
- 1.3 The following method can be used to determine the cost of electricity on this system:

Cost = basic charge + (R 0, 41953 × number of units of electricity)

- 1.3.1 Use this method to show that the cost of using 100 units on this flat- (3) rate system is R 251, 39. Is the basic charge advantageous, motivate?
- 1.3.2 Mrs Msibi uses an average of 140 units of electricity per month. (2) Calculate her monthly electricity cost.
- 1.4 Complete the following table by calculating how much it will cost to use the various units of electricity shown in the table on a 40A Flat-rate system in Msukaligwa Municipality

Units of electricity	0	100	200	(C)	500	800
Monthly cost on a 40A						
Flat – rate system	(a)	R251,39	(b)	R335,30	(d)	(e)

(5)

- 1.5 Use the table of values above to draw the graph to represent the information (5) in the table.
- 1.6 Use the graph to answer the following questions:
 - 1.6.1 Approximately how much will it cost Mrs Msibi if she uses 600 units (2) of electricity in a month on this system
 - 1.6.2 If Mrs Msibi receives an electricity bill of R400.00, approximately (2) how many units of electricity did she use during the month?
- 1.7 Why does the graph not start at 0 on the vertical axis and at what (2) value does the graph start on the vertical axis?
- Explain where **R209,44** comes from in terms of the different tariffs (2) associated with this electricity system.
- 1.9 Why is the graph a straight line?

(2)

1.10 The table below shows the comparison of the tariffs for a 40A Flat-rate system in Carolina and Ermelo towns:

40A Flat –rate system	Basic Charge	Energy Charge (c/ kWh)
CAROLINE		50,16
ERMELO	R 209,44	41,953

Mrs Msibi has a sister who lives in Carolina and who is also on a 40A Flat- (5) rate system. If Mrs Msibi and her sister were to both use 140 of electricity in a month, who will pay more for electricity? Explain your answer and show all calculations.

[42]

QUESTION 2

MUFFIN MADNESS

The grade 10 class is going to bake muffins. The recipe that they are going to use requires the following ingredients:

- 2.1 The volume of 150g of Whole wheat is 250ml. Calculate the volume of the (3)Whole wheat flour in the recipe
- 2.2 When they are all mixed together, all the above ingredients make up 2 litres of mixture (because some parts dissolve into other parts).
 - 2.2.1 Convert 2 litres into ml
- (2)
- 2.2.2 How many muffins can the above recipe make if 60ml is required for (3) each muffin?
- 2.2.3 Using your answer to question 2.2.2, how many eggs will the girls (3) need to buy to make 500 muffins?
- 2.3 The students need to make 500 muffins, using muffin trays that hold 6 muffins per tray. They plan to put 4 trays at a time into the ovens. Each oven takes 30 minutes to bake. How long will they take to make 500 muffins if they will be using 4 ovens?
 (4)

- 2.4 The recipe gives the baking temperature as 356° F. However, the ovens in the Consumer Studies lab are in $^{\circ}$ C. Use the following formula to convert this temperature to $^{\circ}$ C. $^{\circ}$ C = 5/9($^{\circ}$ F- 32 $^{\circ}$) (3)
- 2.5 The students are aiming to make at least R1500 in profit on the sale of their muffins
 - 2.5.1 Calculate the profit that the students will make per muffin. (2)
 - 2.5.2 Calculate the percentage profit (% increase) on each muffin if the (3) cost price of each muffin is R2,50
- 2.6 The students are planning to split the profit of R1500 between two charities in (3) the ratio 1:2. How much money will each charity get if they reach their planned profit?

[26]

ANNEXURE A 1.5

6.1.2 (b) Assignment 2 Memo

QUESTION	SOLUTION							Mark	Level
1.1.1	A fee that is charged for using a particular service. $\checkmark\checkmark$					2 Ex	TL1		
1.1.2	The cost at which a service is provided for which payment is made in advance. $\checkmark\checkmark$							2 Ex	TL1
1.1.3	This is where a customer pays the same amount whether they use the electricity in bursts during mid-day, when demand and the utility's costs are highest, or did not use electricity						2 Ex	TL1	
1.2.1	Basic charge :	= R209,4	44√√					2RT	TL1
1.2.2	The basic charge is a fixed monthly charge that is not2 Exdependent on the units of electricity used during the month. \checkmark							2 Ex	TL1
1.2.3	Electricity cha	rge = 41	,953c or	⁻ R0,4195	53√ ✓			2 MA	TL1
1.3.1	Cost = basic charge + (R0,41953 X no of units of electricity) = R209,44 + (R0,41953 X 100) ✓ = R209,44 + R41,95✓ = R251.39✓					1Su 1Si 1A 3	TL4		
1.3.2	Cost = basic charge + (R0,41953 X no of units of electricity) = R209,44 + (R0,41953 X 140) ✓ = R209,44 + R58,73 = R268.17 ✓						1S 1 A 2	TL2	
1.4	Units of Electricity Monthly cost on40A Flat-rate system(R)	0 209,44 ✓	100 251,39	200 293,35 ✓	300 ✓ 335,30	500 419,21 ✓	800 545	,06√	TL2

1.9	For every one unit of electricity used the amount payable increases by a constant value of R0, 41953. As such, there is a constant increase, which gives rise to a straight line \checkmark	2 Op	TL 4
1.10.1	From 1.3.2, Mrs Msibi's cost for 140 units = R268,17. ✓ Mrs Msibi's sister's cost = R0,9016 X 140 ✓ = R126,22 ✓ Therefore Mrs Msibi pays more ✓ ✓	2M 2A 1 Op 5	TL 4
2.1	g : ml 150 : 250 300 : ?more✓ 300 ÷ 150 X 250✓ =500ml✓	1M 1MA 1A 3	TL 2
2.2.1	2 litre = 2 x 1000 = 2000ml ✓ ✓	2C	TL 1
2.2.2	2000 ml ÷ 60ml✓ = 33.33 muffins✓ = 33 muffins✓	1M 1MA 1A 3	TL 2
2.2.3	2 eggs : 33 muffins ? : 500 muffins ✓ 500÷ 33 x 2 ✓ = 30 eggs ✓	1M 1MA 1A 3	TL 3
2.3	6x4 = 24 per oven ✓ 24x4 = 96 muffins at a time ✓ No of batches = 500÷96 = 5,21 = 6 batches ✓ Therefor total time = 6 x 0.5hours = 3 hours or 180 minutes ✓	2M 1A 1Rou 4	TL 3
2.4	${}^{0}C = 5/9({}^{0}F - 32^{0})$ ${}^{0}C = 5/9(356^{0} - 32^{0}) \checkmark$ $= 5/9 \times 324 \checkmark$ $= 180^{0}C \checkmark$	1S 1M 1A 3	TL 2
2.5.1	Profit per muffin =R1500÷ 500√ = R3,00 per muffin√	1M 1A 2	TL 2
2.5.2	Profit = R3,00 = %profit profit/cost X 100✓ = 3,00/2,50 X 100✓ = 120%✓	1M 1S 1A 3	TL 3
2.6	Total parts = 1+2 = 3 Charity 1 = $\frac{1}{3} \times R1500 \checkmark$ = R500 \checkmark Charity 2 = $\frac{2}{3} \times R1500$ = R1000 \checkmark	1M 1S 1A 3	TL3
	TOTAL	68	

6.1.3 (a) Assignment 3

Question1:Finance

Look at the salary advice slips, receipts, bank statement and cheque stubs collected by the Marufane family, then answer the questions that follow.

- - 2.1 Explain the meaning of the term "radius".
 - 2.2 Determine the radius of ONE of the holes that has been dug out for the trees if the area of the hole is $0.79 \ m^2$?
 - Use the following equation: $\mathbf{r} = \sqrt{\frac{A}{\pi}}$
 - 2.3 If the perimeter of the garden is 24 *m* and the width of it is 4 *m* how much will be the length of it? Hint Perimeter is = 2 (*I*+*b*) (4)

- 1.1 Create a table and use it to put the Marufane household expenses into (10) categories, clearly indicating items and its cost in each category.
- 1.2 Use the information from the slips and the categories you have developed (10) to draw up a household budget for the Marufane family. You will need to decide which expenses are fixed and which are variable. Use the following headings. "Fixed expenses "," Total fixed expenses", "Variable expenses "," Total variable expenses "," Total expenses ", "Total income", " Balance 67
- 1.3 Analyse a budget for the Marufane household and make recommendations (5)as to how the expenditure should be changed to improve the finances of the Marufane household

[25]

Question 2:

Measurement

plant several trees in the garden and to cover the remainder of the garden with grass. The illustration below provides a view from above of their front garden. Each hole shown below, has a radius.

Jane and Tom are considering redesigning their front garden. They plan to

(3)

(4)

[13]

Question 3: Maps, plans and other representation of physical world.

Study the sitting plan of a school hall below and answer the questions that follow.

3.1 How many rows are behind seat G7?
3.2 Is seat A1 a good seat to view a movie? Give a reason for your answer
3.3 Do you think there are enough emergency exits in the school hall?
3.4 Use the Annexure A to indicate the evacuation route in case there is a fire in the school hall
(4)

3.5 The school hall is stepped and each step is 22 cm high. How high is a seat in row K from a seat in row C?

(2) **[12]**

ANNEXURE A

Name of the Learner:

6.1.3 (b) Assignment 3 Memo

QUESTION 1[25]

Question		Solution		Explanation	Level	
1.1	Home expenses	School expenses	Transport expenses	2 marks for home expenses		
	Rent - R3500 Electricity - R300 Grocery - R976 Furniture - R350 ✓ ✓ Telephone expenses Telephone - R192 Telephone - R192	School fees - R450 ✓ ✓ Extra expense Flowers - R15 Entertainment Pocket money Sweets - R20	Petrol-R231 + R220 + R228 Insurance - R500 ✓ ✓ s s 0 - R400 - R100	2 marks for school expenses 2 marks for transport expenses 2 marks for telephone expenses 2 marks for extra expenses (10)	1	
	cellphone voucher - R275√√	Sweets - R70 Takeaways - F Dancing lesso Clothing - R25 Savings - R50	R120 ns - R200 50 0 ~ ~	0 R200		
1.2	FIXED EXPEN	SES	R3500	2 marks for fixed expenses	2	

Transport(petrol)	R679 √ √	2 marks for
Insurance	R500	variable expenses.
Savings	R500	1 mark for total
School fees	R450	variable.
Dancing classes	R200	expenses.
Pocket money	R100	1 mark for R 4 500
TOTAL FIXED EXPENSES	R5929	salary.
VARIABLE EXPENSES		1 mark for R 5 000
Telephone/cellphone	R467	salary.
Clothing account	R250	1 mark for total income.
Furniture account	R350	1 mark for left to
Groceries	R976 √√	spend OR save.
Electricity	R300	(10)
Flowers	R150	
Coffees, takeaways	R590	
entertainment etc.		
TOTAL VARIABLES EXPENSES	R3083✓	
TOTAL EXPENSES	R9012✓	
INCOME		
Salaries	R4500	
salaries	R5000✓	
TOTAL INCOME	R9000✓	
LEFT TO SPEND OR SAVE	-R12	
SHORTFALL	 ✓ 	

1.3	The Marufane family is in debt, i.e. they spend more than they earn. ✓✓ Learners can make suggestions such as cutting down on spending, being more careful about the electricity used, paying off the accounts and closing them, using less money on 'wants' like entertainment and take-away, using a telephone instead of a cellphone etc.	 1 mark for opinion 2 marks for justification 2 marks for suggestions / opinion (5) 	4

QUESTION 2 [13]

Ques #	Solution	Explanation	Level
2.1	A straight line from the Centre to the circumference of a circle or sphere. ✓ ✓ Unit is m/cm/mm etc. ✓ (any applicable unit)	2 marks for definition of the term 1 mark for unit	1
2.2.	$r = \sqrt{\frac{A}{\pi}}$ $= \sqrt{\frac{0.79}{3.142}}$ $= 0.50 \checkmark m \checkmark$	2 marks for substitution 1 mark for answer 1 mark for the unit	3
2.3	P = 2 (I +b) 24 \div 2 = 12 ^V 12 - 4 ^V = 8 Therefore the length is 8 m ^V	2 marks forsubstitution in theformula1 mark for subtraction1 mark for the answer	3

2.4	d = 2r	1 mark for multiplying	
	= 2 x 0,5	radius by 2	2
	$= 1 m^{\checkmark}$	1 mark for the answer	
QUESTION 3 [12]

Ques #	Solution	Explanation	Level
3.1	6 rows✓✓	2 marks for answer	2
3.2	No, it is not a good seat, ✓ the person will have to look sideways at the stage. ✓	1 mark opinion 1 mark for justification	4
3.3	Yes \checkmark , there are 4 emergency exits \checkmark	1 mark for answer 1 mark for justifying	2
3.4	FIRE EXIT P O N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FIRE EXIT M L K J I C B A I Z 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 FIRE EXIT FIRE EXIT STAGE	4A: Theatre logically divided into 4 blocks, each block assigned to a fire escape.	4
3.5	= 8 × 22✓ =176cm✓	1 mark for 8 rows x 22 cm 1mark for answer	3

6.1.4 (a) Investigation 1

CHILD GRANT BUDGET

Sixteen - year old Madelei has a 3-month old baby. She is eligible for the monthly child grant from the state, because she is unemployed. In this task you need to find out more about the child grant and draw up a budget for Madelei based on the money available to her. Assume that Madelei has only one child.

- If you have access to the Internet, go tohttp://www.sassa.gov.za/ INTRODUCTION - TO SOCIAL -ASSISTANT-642aspx. Alternatively, you may phone toll free 0800 60 10 1
 - 1.1 How did you get information about the child grant?
 - 1.2 Define child grant.
 - 1.3 How much is the child grant?
 - 1.4 Who is eligible to receive it?
 - 1.5 How does the money get paid?

(10)

- Interview Madelei to find out what she needs to buy every month for the baby. Develop a questionnaire that you are going to use and hand it in with your investigation and draw up a list of items based on the information from the (10) interview.
- 3. Visit any shop to get comparative prices of the items and present your information in a suitable table **OR** provide evidence from the shop. (10)
- Draw up a monthly budget for Madelei. Your budget must be reasonable in terms of Madelei's income from the grant. You might have to leave off certain items after careful consideration. (10)

Provide **five** financial advices to Madelei explaining why it is necessary to leave out certain items and guide her on alternative ways to obtain those items (10) or how to cope without those items.

TOTAL: 50

	NVESTIGATION – RUBRIC
1 memo	FERACY – II
Investigation '	MATHEMATICAL LI
6.1.4 (b)	SRADE 10 -

							1
	obtained						
	MARK (0)	No effort	No effort	No effort	No effort	No effort	TOTAL
e	MARKS. (2)	Obtained relevant information and answered one question.	Questionnaire is incomplete/ inappropriate and the list is irrelevant	Few comparative prices from the shop are provided, but no table provided.	Monthly budget drawn up with too little parts of income and expenditure not shown correctly.	One sound context appropriate advice and recommendations provided to Madelei	
Grad	MARKS (4)	Obtained relevant information and answered two questions	Questionnaire is appropriate but covers too little items to be bought	Few comparative prices from the shop are provided in an unsuitable table with complete evidence.	Monthly budget drawn up with too little parts of income and expenditure correct.	Two sound context appropriate advices and recommendations provided to Madelei	
	MARKS (6)	Obtained relevant information and answered three questions	Questionnaire is appropriate but covers few items	Few comparative prices from the shop are provided in a suitable table with complete evidence.	Monthly budget drawn up with some parts of income and expenditure correct.	Three sound context appropriate advices and recommendations provided to Madelei	
	MARKS (8)	Obtained relevant information and answered four questions	Questionnaire is appropriate and covers most items to be bought	Some comparative prices from the shop are provided in a suitable table with complete evidence.	Monthly budget drawn up correctly and reflects only the income and expenditure.	Four sound context appropriate advices and recommendations provided to Madelei	
lame	MARKS (10)	Obtained all relevant and realistic information by answering all questions	Relevant questionnaire and the list of items that need to be bought	All comparative prices from the shop are provided in a suitable table with complete evidence.	Monthly budget drawn up correctly and reflects income and expenditure with the expenditure being not more than the income	Five sound context appropriate advices and recommendations provided to Madelei	
Z		-	2	m	4	ъ	

6.1.5 (a) Investigation 2

Question 1

John sees an advert in the newspaper about a Nokia Asha 210 cell phone. Study the advert below and answer the questions that follow.

- 1.1. Determine the number of months that you will pay the subscription fee? (2)
- 1.2.Determine the number of free bundles that the phone gives?(2)
- 1.3. Explain the term subscription fee in this context.
- 1.4. Determine the time of the day that you can use the free minutes in the contract (2)
- 1.5. Calculate the total cost to be paid after 24 months, if John is using less than 100 (2) minutes and 20 MB per month.
- 1.6. If John skips one instalment for the phone, will he still pay the same amount of (3) money as above? Explain your answer.
- 1.7. Asha 210 contract charges R1.50/min. Determine the values of A, B and C in the (6) Table 1 below.

Talk Time in	0	50	100	150	200	250	300	В	400	450	500
Asha 210 in rand	0	0	A	75	R150	R225	R300	375	R450	С	R600

Table 1: Talk time vs. monthly costs

1.8. Draw the graph using the information from the table above on Annexure A.

(8)

(2)

- 1.9. If John used the Asha 210 for 600 minutes in a month and was billed R819, (6) verify whether his billing was correctly done.
- 1.10. If John loves social networks and visits other sites while surfing the internet for (3) information, will this contract phone be cost effective? Give a reason.
- 1.11. When buying a contract cell phone what other factors besides prices do people (4) consider when making a decision? Name two.

[40]

[10]

Question 2

The selling price of a new Nokia Asha 210 is R1199 on prepaid

Charges for prepaid calls *MTN TO MTN R1.20 for 3 minutes billed per second and 57 minutes free*

MTN TO OTHER 79c per minute billed per second

SMS R0,50 per SMS

- 2.1. What does SMS stand for? (2)
 2.2. Calculate the amount that Mpho will pay to write 10 SMS's to friends. (2)
 2.3. Determine the balance on Mpho's cell phone if she buys airtime for R30 and (3) makes an MTN call for 43 minutes.
- Calculate the amount that Mpho will pay if she was given a 10% discount on the (3) phone.

GRAND TOTAL: 50

Name of learner: _____

Class :_____

ANNEXURE A

Question 1.8.

6.1.5 (b) Investigation 2 memo

Question	Solution	Explanation	Levels
1.1	24 months√√A	2A: Answer	1
1.2	20MB per month ✓ ✓ A	2A: Answer	1
1.3	Subscription fee is an initiation fee paid as part of the contract. $\checkmark \checkmark A$	2A: Answer	1
1.4	Anytime ✓ ✓ A	2A: Answer	1
1.5	Cost = R69 x 24 months ∕ M	1M: Method	1
	= R1 656√CA	1CA: Answer	
1.6.	No \checkmark A, he will be penalised and pay more $\checkmark \checkmark$ R	1A: Answer	4
		2R: Reason	
1.7	$A = 0 \checkmark \checkmark A$	6: Answers	2
	B = 350 minutes√√A		
	C = R525√√A		

1.11	Availability of stock ✓ ✓ A	4A: Answer	2
	Colour√√A	(Any two)	
	Features ✓✓A		
2.1	SMS stand for Short Message Services ✓ ✓ A	2A: Answer	1
2.2	payment = 10 SMSes x R0,50 ✓M	1M: Multiplication	1
	= R5√CA	1CA: Answer	
2.3	charge for 43 minutes = R1.20 for 3 min + 40 min free ✓ M	1M: Addition	2
	Balance = R30 – R1.20 ✓ M	1M: Subtraction	
	= R28.80√CA	1CA: Answer	
2.4	cost = R1199 x 90% ✓ ✓ MA	2MA: Multiplication	2
	= R1 079.10✓ CA	101	
		TCA: Answer	

6.1.6 (a) Investigation 3

PART ONE: Drawing a floor plan of your house

Investigate various floor plans and different fixtures used on floor plans and do the following

- 1.1 Measure the longest walls of your house
- 1.2 Develop a scale such that you can draw your house on an A4 page
- 1.3 Measure the length of all other outside and inside walls; convert these measurements using your scale and draw these to complete your house floor plan
- 1.4 Label these rooms and indicate the width of the door openings on the plan, make use of necessary keys
- 1.5 Measure the length and widths of all built-in fixtures (such as counters), and add them in your plan
- 1.6 Use Part 2 below to draw the layout of the tiles on the plan (keeping 2 cm between tile, and 1 cm between a tile and its edge)
- PART TWO: Collection of Data
- 2.1 Go to the tile selling store and identify the type of tile you will use
- 2.2 Determine dimensions of the tile to be used
- 2.3 Determine how it is packaged (how many per package), provide evidence or diagram
- 2.4 Determine the cost of a package of tiles you will us
- 2.5 Determine the cost of a grout bag, and how many will be needed for your required area
- 2.6 Determine the labour cost for tiling (R/square meter)

PART THREE: Calculating Cost

- 3.1 Calculate the number of packages of tiles needed (create a 10% allowance for breakages)
- 3.2 Use Part 1 and 2 to determine the cost of grout required
- 3.3 Use Part 1 and 2 to determine the labour cost for tiling the house
- 3.4 Determine the total cost of tiling the required area

TOTAL: 50 MARKS

6.1.6(b) Investigation 3 memo

Investigation Rubric Due Date : Total Mark : 50

Name of learner :

Part1: Drawing a floor plan of your house

1.1

No measurements of the longest wall	Shown the measurement of the longest
(0)	wall
	(2)

1.2

No scale	Incorrect scale	Correct scale
(0)	(1)	(2)

1.3

No measurement and conversion for all	There's measurement and
outside / inside wall	conversion for both inside/ outside
	wall
(2)	(4)

	necessary keys	necessary keys		
	by making use of the the soary ke	by making use of		
of necessary keys	by making use of necessary ke	by making use of		
e plan the plan by making use	indicated on the plan the plan by r	plan indicated on the pla	plan	
All rooms are indicated of	Few rooms are All rooms are	g indicated on the Few rooms are	Nothing indicated on the	
All rooms are indicat	Few rooms are All rooms are	g indicated on the Few rooms are	Nothing indicated on the	

1.5

Nothing on the	Only 1 dimension	All dimensions measured:
plan	measured	Length and width
(0)	(1)	(2)
(0)	(-)	(=)

1.6

Nothing	drawn only 2 cm between	Drawn 2 cm between the
	the tiles	tiles and 1 cm between
		tiles and the edge
(0)	(2)	(4)

Part 2: Data collection

2.1

Nothing indicated	Only mentioning without	Mentioning and evidence	
(0)	evidence	present	
	(2)	(4)	

2.2

Nothing indicated	1 dimension of tile	2 dimensions of a tile	
(0)	identified	identified	
	(1)	(2)	

	-				
Nothing	Mention how	many tiles	Mentioning number of tile		r of tiles
	per packages		per	package	with
			evidence	e as	either
			diagram	/ samp	le or
			quotatio	n	
(0)	(2)			(3)	

2.4	Nothing	Only mentioning without	Mentioning with evidence
		evidence e.g. quotation	e.g. quotation
	(0)	(1)	(2)

2.5

Nothing	Only	Cost of grout	Cost of grout is	Cost of
	number of	is determined	determined for	grout is
	grout bags		the total area	determined
	mentioned		needed to be	for the total
			tilled	area
				needed to
				be tiled and
				evidence is
				attached
				e.g.
				quotation
				(4)
(0)	(1)	(2)	(3)	

No rate	Indicated the rate	Indicated the ra		rate	and
		evidence	e.g. q	uotatio	on
(0)	(1)		(3)		

Part 3: Calculating cost

3.1

Nothing	Correct number	Calculating	Adding the 10% breakages
	of packages	the 10 % of	to the total number of tiles on
		breakages of	a package to get how many
		tiles in a	tiles will be needed in total
	(2)	package	(4)
(0)		(3)	

3.2

Nothing	Calculating the cost of grout needed
(0)	(5)

3.3

Determining the area to be	Multiplying the area with the rate
tiled	
(2)	(5)

No addition	Addition of some cost	Added all the cost for tiling
		the required area
(0)	(1)	(2)

6.2 Grade 11 Tasks

6.2.1(a) ASSIGNMENT 1

MARKS:50

ASSIGNMENT 1 QUESTION 1:

1.1 The basic working week in Neat Upholstery factory is 45 hours from Monday to Friday. Overtime during the week is 1½ times the basic hourly rate of R31, 50 per hour. On Saturdays they pay twice the hourly rate. Study the table below and answer the questions that follow:

Names	М	Т	W	Т	F	S
John Short	9	10	8	9	9	0
Marius Ball	10	11	10	9	10	0
Phillip Smart	11	10	10	11	9	4
Lwazi Nzomo	11	9	9	10	8	8

1.1.Does John Short qualify for overtime? Explain.(3)1

- 1.1. How do you think management of Neat Upholsterers determine whether a
- 2 person has worked overtime? Do you think this is a fair policy?
- 1.1. Calculate the amount of overtime that Mr. P. Smart is supposed to receive for the week. (5)
- 1.1. Study his wage slip below and answer the questions that follow:
- 4

Payslip	NEAT UPHOLSTERERS	
Name: L. Nzomo		Date: 12-03-2016
		Amount
Basic Pay(45	45…hours × R 31,50…	1417.50
hours)		
Overtime:	3hours × R 47.25	141.75
Saturday:	8…hours × R 63,00…	504.00
	GROSS PAY	2063.25
Authorised: N. Ea	at Received: L.	Nzomo

- (a) Show how the amount of R47, 25 was determined. (2)
- (b) Mr. Nzomo feels that his wage was incorrectly calculated, verify his (4) claim.

[17]

(3)

QUESTION 2:

2.1 Steven's Life Orientation group investigated whether there was a difference between the number of hours that men and women worked during a normal work week. They found some data in the Quarterly Labour Force Survey (3rd quarter 2015) as shown below.

Usual hours of work in a week (Jul – Sep 2015)					
Number of hours	Male	Female			
Less than 15 hours	130	218			
15-29 hours	355	700			
30-39 hours	425	645			
40-45 hours	4982	3827			
More than 45 hours	3024	1523			
Total respondents	8916	6913			

- 2.1.1 How many respondents were used in this survey? (2)
- 2.1.2 In what category of hours were there more females than men? (2)
- 2.1.3 What does the answer in 2.1.2 tell you about the data? (2)
- 2.1.4 Determine the percentages of both male and female respondents where respondents were working between 15 and 29 hours. Show all your (4) workings

2.1.5 If the average hourly rate for people working less than 15 hours per week is R30.25, and was calculated by using the following rates:

Α	21.50	22.30	24.50	24.50	26.15
26.40	27.30	28.40	30.20	31.50	32.50
33.10	33.60	35.20	34.50	41.20	42.30

- (a) What will the lowest hourly rate (A) be, if the average was calculated by using the data above?
- (b) Mbulelo is working at the highest rate in this category and worked for 14¹/₂ hours. What will his total wage be for that specific week? (2)
- (c) Do you think it is fair if the average hourly rate of people working more than 45 hours is R22,50? Explain.

QUESTION 3:

3.1 Siya bought a car with a capacity of 60 litres. He filled the petrol tank of his car with 53,62 litres of petrol when the odometer in his car showed 103 914 km. The next time he filled the tank it took

56,13litres and the odometer showed 104 323km.

- 3.1.1 How many kilometres did Siya travel between refuelling?
- 3.1.2 How many litres of petrol did he use to travel this distance? (2)
- 3.1.3 On average, how many litres does his car use every 100km? (4)
- 3.1.4 The petrol price for the first quarter is shown in the table below: Study the table and answer the questions that follow:

PETROL - Pump price						
Date	Coastal Inland					
	95 EPU/LRP	Change	93 EPU/LRP	Change	95 EPU*	Change
02 March 2016	R11.31	▼29c	R11.46	▼69c	R11.74	▼69c
03 February 2016	R12.00	▲ 6c	R12.15	▲ 6c	R12.43	▲ 6c
06 January 2016	R11.94	▼ 3c	R12.09	▲ 0c	R12.37	▼ 3c

Source:

http://www.engen.co.za/home/apps/content/products_services/fuel_price/default.asp

- (a) With how many cents did the price of petrol increase/decrease at coastal level on 2 March 2016? (2)
- (b) How much did it cost him if he filled his tank the first time in Cape Town on 2 February 2016?
- (c) How much money would he have saved/paid more if he filled up his tank on 3 February 2016?

(3)

(3)

(2)

(2)

[17]

6.2.1(b) Assignment 1 Memo

QUESTIC	ON 1:	Explanation of mark allocation	LEVEL
1.1.1	No. \checkmark He only worked for 45 hours, which is a	1A	L4
	basic working week.✓ ✓	2J (3)	
1.1.2	They add all the hours and if the time is more	10	L3
	than 45 hours, you subtract that to determine the	2J(3)	
	overtime. I do not think it is fair. ✓A person might		
	work 15 hours on 1 day and not qualify although		
	they work for more hours. $\checkmark \checkmark$		
1.1.3	51 - 45 = 6 hours overtime $6 \times R47, 25 \checkmark = R283.50 \checkmark$ $4 \times R63, 00 \checkmark = R252 \checkmark$ Total = R535.50 \checkmark	1M 1A 1M 1A 1CA(5)	L2
1.1.4(a)	R31,50 × 1,5√ = R47,25√	1M 1A(2)	L1
(b)	Total hours worked(Mon – Fri) $11+9+9+10+8 = 47\checkmark$ \therefore Normal hours = 45; Overtime(1½) = 2; Overtime(×2) = 8 hours \checkmark Normal = 45 × R31,50 = R1417,50 Overtime(1½) = 2 × R47,25 = R 94,50 Overtime(×2) = 8 × R63,00 = <u>R</u> 504,00 = R2016,00 \checkmark His claim is invalid \checkmark	1M 1A 1CA 1J(4)	L3
		[17]	

QUESTI	ON 2:	Explanation of mark	Levels	
			allocation	
2.1.1	8916 + 6913 = 15829 ma	le respondents√√	2A	L1
			(2)	
2.1.2	In the: "less than 15 hours", "15-29 hours" and		2A	L2
	"30-39 hours" categories.	$\checkmark\checkmark$	(2)	
2.1.3	It shows that more of the f	emale workforce is	2A	L4
	working fewer hours per week. ✓✓		(2)	
2.1.4	Male:	Female:	1M	L2
	$=\frac{355}{4} \times \frac{100}{4}$	$=\frac{700}{100}\times\frac{100}{100}$	1A	
	8916 1	6913 1	1M	

	= 3,98%	=10,13%✓	1A (4)	
2.1.5(a)	R30,25 × 18 = R544,50 \checkmark R544,50 – (21,50 + 22,30++R42,30) \checkmark R544,50 – R515,15 A = R29,35 \checkmark		2M 1A (3)	L3
(b)	R42,30 × 14,5= R613,35√√		2M (2)	L2
(c)	Fair. They are working more hours per day. Unfair. People are supposed to be paid for the amount of work that they do. ✓✓		2A (2)	L4
				[17]

QUESTIC	DN 3:	Explanation of mark allocation	Level
3.1.1	104323 – 103914√ = 409km√	1M 1A(2)	L1
3.1.2	56.13 kl√√	2A (2)	L1
3.1.3	$\frac{409}{100} = \frac{56}{l} \checkmark \checkmark$ $409 = 56 \times 100 \checkmark$ $= 13.68 \checkmark$	3M 1A (4)	L3
(a)	29c√√	2A (2)	L1
(b)	R11.31 x 53.62√√ = R606.44√	1A for 53.62 1M 1CA(3)	L1
(c)	R12 x 53.62 ✓ ✓ =R643.44 ✓ He would save =R643.44 –R606.44 ✓ =R37.00 ✓	2MA 1A 1M 1CA	(5)
			[18]

6.2.2. (a) Assignment 2

6.2.2. ASSIGNMENT 2 MARKS:55

QUESTION 1

The grade 11 learners want to renovate their school's bath rooms. They decide to tile the bottom half of the inside walls and to paint the top half. The back and side walls have no doors or windows and the toilets are only installed after the painting and tiling has been finished. The wall on the front only has one window and one door.

- Tiles are sold in boxes of 24 tiles per box and every box covers round about 1m².
- Round about 10% more tiles must be purchased to make provision for breakage.
- Patty's Paint Shop gave them a quotation for paint (see quotation).
- One litre of paint covers 6m².

Patty's Paint Shop 5 th Avenue nr 23, Noupoort				
2 <i>l</i> white paint R170.99				
1 l white paint	R94.99			

1.1 Calculate the areas of the back and side walls that must be (6) tiled. The following formula may be used: **Area of a rectangle =** $l \times b$

1.2		Calculate the area of the bottom section of the front wall that	(4)
		must be tiled.	
1.3		Calculate the total area that must be tiled	(2)
1.4		Calculate the number of boxes of tiles that must be purchased	
		to tile the required area. To assist you to calcúlate the number	
		of boxes of tiles needed, do the following calculations.	
	1.4.1	Number of tiles needed to calculate the total area.	(2)
	1.4.2	Number of tiles needed, including provisioning for breakage.	(3)
	1.4.3	Total number of boxes of tiles needed.	(2)
1.5		Calculate the areas of the back wall and the side walls that	(4)
		must be painted.	
1.6		Calculate the area of the front wall that must be painted.	(5)
1.7		Calculate the total area that must be painted.	(2)
1.8		Calculate the total quantity of paint that must be purchased to	(3)
		paint the cloak room.	
1.9		The contractor claims that the cost of the paint would be	(4)
		R350,00. Calculate the total cost of the paint based on Patty's	
		quotation to prove whether he is right	

[37]

QUESTION 2

Mr J. Davids is a government employee and the abbreviated salary advice below shows his monthly income and deductions. UIF is calculated as 1% of the gross salary.

Income	Amount	Deductions	Amount
Basic Salary	R14 100,00	Income Tax	R2 550,00
Housing Allowance	R900,00	Pension	R945,00
		Medical Aid	R1 430,00
		UIF	В
		Total deductions	С
Gross salary	Α	Nett salary	D

2.1 Calculate the values of A,B,C and D respectively. (8) 2.2 Calculate the amount of UIF per month that must be paid over to (2)the fund. 2.3 His employer claims that the monthly deduction and (8) contribution to the UIF should, after the increase below be R350,00. Show by means of calculations if he is right or wrong by determining the total monthly UIF amount that will be paid over to the fund if the employee's monthly basic salary increased by 7,5% and a monthly increase of R300,00 in the housing allowance was introduced by Government. Show all calculations

[18]

6.2.2.(b) Assignment 2 Memo

6.2.2. Assi	gnment 1 MEMO		
QUESTION 1:		Explanation of mark	LEVEL
1.1	Area of back wall = $5m \times 2.8mS \checkmark F$	allocation 1 SF Sub in Formula	
	Area of the bottom half of back wall: = 14m ² ÷ 2 = 7m ² √A OR	1 Answer	
	Area of back wall to be tiled: = $5 \text{ m x } 1,4 \text{ VSF}$ = $7 \text{m}^2 \text{ VA}$	1 SF Subs in Formula 1 Answer	
	Area of side walls to be tiled: = $(2,8m \times 1,5m) \div 2 \checkmark SF$ = $2,1m^2 \times 2$	1 SF Substitution	3
	= $4.2m^2 \sqrt{A}$ OR	1 Answer	
	= 1,5m x 1,4m \checkmark SF = 2,1m ² × 2	1 SF Subs	
	= 4,2m²A√	1 Answer	
	Total Area that must be tiled: = 7 + 4,2 ✓ M = 11,2m ² ✓ CA	1 Method 1 CA Answer (6)	
1.2	Area = $5 \times 1,4$ = $7m^2 \checkmark A$ = $7m^2 - (1,4 \times 0,78m)^2 \checkmark \checkmark$ = $5,908m^2$ $\approx 5,91m^2 \checkmark CA$ OR Area = $(5 - 0,78) \times 1,4 \checkmark \checkmark \checkmark$ = $4,22 \times 1,4$ = $5,908$ $\approx 5,91m^2 \checkmark CA$	1 Answer 1 Method 1 SF 1 CA Answer 1 C Converting to meters 1M Method(Subtracting 0,78) 1 SF Substituting into formula 1 CA (4)	3
1.3	Total area = 11,2 + 5,91m²√ = 17,11m² ✓	1 Method 1 CA Answer (2)	1

1.4.1.	Number of tiles needed to cover the area = 17,11m ² ÷ 1√M = 17,11 m ² √A	1 Method(÷1) 1 Answer (2)	2
1.4.2.	Number of tiles to be purchased including 10% allowance = 17,11 x 24 ✓ M = 410,64 + 10% of 410,64) ✓ M = 410,64 + (41,064) = 451,704 tiles ✓ CA	1 Method(×24) 1 M(+10% of) 1 CA (nr of tiles) (3)	2
	1.4.3 Total number of boxes required = 451,704 ÷24√M = 18,82 ≈ 19 Boxes √R	1 Method (÷ 24) 1 Rounding (2)	2
1.5	Back wall area = $5m \ge 2,8m\checkmark$ = $14m^2\checkmark$ Back wall area to be painted = $14m^2\div 2\checkmark$ = $7m^2\checkmark$ OR Back wall area = $(5m \ge 1,4m)\checkmark$ M = $7m^2\checkmark$ A Side Walls = $2(1,5m \ge 1,4m)\checkmark$ M = $4,2m^2\checkmark$ A	1 Method 1 Answer 1 Method 1 Answer 1 Method (2,8÷2) 1 Answer 1 Method 1 Answer (4)	2
1.6	Area of front wall = $5m \ge 1,4m \checkmark M$ = $7m^2 \checkmark A$ Area of wall to be painted = $7m^2 - ((1 \ge 0,5) \checkmark M + (0,6 \ge 0,78)) \checkmark M$ = $7m^2 - (0,5 + 0,468)$ = $6,032m^2 \checkmark$	1 Method 1 A Answer 1 Method(- area of window + 1Method(- area of door) 1 CA Answer (5)	3
1.7	Total area to be painted = 7 + 4,2 + 6,032 ✓ M = 17,452m² ✓ CA	1Method(Adding values) 1 CA Answer (2)	1
1.8	Paint needed = 17,232 ÷ 6m²√M = 2,872 litres√CA ≈3 litres√R	1 Method(÷6) 1 CA Answer 1 Rounding (3)	1
1.9	Total Cost of paint = 3 <i>l</i> x R94,99√M = R284,97√CA OR	1 Method 1 CA Answer 1 Method	4

Total Cost of paint = (2 <i>l</i> R170,99) +(1 <i>l</i> R94,99√M = R265 98√M	1 Answer	
No/Yes \checkmark O – he is wrong, the paint costs less/more than R300,00 \checkmark J	1 Opinion + 1 Justification (4)	

QUESTION 2 18 Marks					
QUES					
2.1	A – R14 100 + R900✓ = R15 000 ✓	1 Method + 1Answer			
	B – R15 000 x 1% ✓= R150 ✓	1 Method + 1Answer			
	C – R2 550 + R945 + R1 430 + R150✓ = R5 075 ✓ D – R15 000 – R5 075✓ = R9 925 ✓	1 Method 1 CA Answer 1 Method 1 CA Answer	1		
	(8)				
2.2	$2(1\% \times 15000)\checkmark = R300\checkmark$ (2)	Method + 1 Answer	1		
2.3	R14 100 x 7,5% ✓ = R1 057,5 ✓ R14 100 + R1 057,5 = R15 157,50 ✓ R900 + R300 = R1 200 R15 157,50 + R1 200 = R16 357,50 ✓	1 Method(×7,5%) + 1A 1 CA Answer			
	R16 357,50 x 1% ✓ = R163,58 x 2 = R327,16✓	1 CA Answer 1 Method 1 CA Answer	4		
	be R327,16√ (8)	1 Justification + 1 Reason			

6.2.3.(a) Assignment 3

- 1.1Write down the grid reference for Kruger National Park.(2)
- 1.2 In which general direction is Cape Town from Durban? (2)
- 1.3 Which national park is situated in Free State?
- 1.4 Thandile measured the distance from Sun City to Johannesburg on her map and found it to be 17,4 cm long. Use the given scale to calculate the actual distance in kilometres. (3)
- 1.5 It took Thandile 30 minutes to fly the distance of 192,4 kilometers between Pilanesberg National Park and Johannesburg. Calculate the average speed of the aircraft in kilometres per hour.

Use the formula: Average speed = $\frac{Distance\ travelled}{Time\ taken}$ (2) [11]

(2)

QUESTION 2

2.1 The state of the main dams supplying the Cape Metropolitan area with water as compared to the five previous years is reflected in the table below.
 The capacity is given in million cubic meters (million m³).

TABLE 2: Water level of dams supplying water in the Cape Metropolitan area.

DAM	BULK STORAGE						
						Current	Previous
	CAPACITY	%	%	%	%	week	week
		2012	2013	2014	2015	2016	8 Aug
WEMMERSHOEK	58,644	79.1	99.9	99.9	71.1	69.1	68.8
STEENBRAS LOWER	33,517	100.2	100.6	100.1	90.6	64.1	63.4
STEENBRAS UPPER	31,767	99.6	102.4	100.3	100.6	99.6	100.7
VOËLVLEI	164,095	73.6	94.8	99.9	49.5	57.6	55.3
THEEWATERSKLOOF	480,188	84	103.3	102.9	71.9	50.2	49.2
BERG RIVER	130,010	103.8	101.8	100.7	85	64.5	62.2
TOTAL STORED	898,221	770,625	908,922	912,967	641,009	512,850	501,397
% STORAGE		85.8	101.2	101.6	71.4	57.1	55.8

2.1	What does the word capacity mean?	(2)
2.2	Determine the range of the capacity of these dams.	(3)
2.3	Determine the median capacity of these dams.	(3)
2.4	Which dam showed an increase in the water level from 2015 to 2016?	(2)
2.5	Calculate, to the nearest million m ³ , the current amount of water in the Berg River dam.	(3)
2.6	Which dam's water level remained the most constant over this five year period?	(2)
2.7	Which dam(s) show the largest percentage increase in water from the previous week to the current week?	(2)

2.8 Calculate the average percentage decrease in the water levels of the Wemmershoek dam from 2014 to 2015. You may use the following formula: Average percentage decrease = $\frac{difference in percentage from 2014 to 2015}{percentage in 2014} \times 100\%$

(3) [**20**]

QUESTION 3

3.1

The data in the following table (TABLE 3) is made available from the Electoral Commission of South Africa (IEC) with regard to the Election on 3rd August 2016. (<u>http://www.elections.org.za</u> and <u>https://www.enca.com/south-</u> <u>africa/municipalelections-numbers)</u>

TABLE 3

Number of voters	s per province
Eastern Cape	3 161 535
Free State	1 418 288
Gauteng	5 937 471
Kwa-Zulu Natal	5 056 518
Limpopo	2 436 112
Mpumalanga	1 827 935
North West	1 651 242
Northern Cape	584 830
Western Cape	2 900 567
TOTAL number of voters	A

Refer to TABLE 3 and the graph of the Local Election Results questions below:

- 3.1.1 Calculate the total number of voters that voted nationally (Value A in table 3).
 3.1.2 Which province had the second highest number of voters?
 3.1.3 If 60% of the total voters were females, calculate the number of male voters in the 2016-election.
 (3)
- 3.1.4 Arrange the number of voters per province in ascending order. (3)

- 3.1.5 Calculate the percentage of votes in the 2016-election that went to "Other" in the National Results. (2)
- 3.1.6 Kwa-Zulu Natal is the only province where there was an increase in the number of voters for the ANC from the 2011-election to the 2016-election.
 - (a) If the percentage difference was 1, 20% and the number of voters were 5 056 518, calculate the number of voters who voted for the ANC in 2011.
 (b) Arrange the other 8 provinces in order of percentage
 - (b) Arrange the other 8 provinces in order of percentage decrease in the number of voters for the ANC. (4)

[19]

6.2.3.(b) Assignment 3 Memo

QUESTION 1:

Explanation of mark allocation

LEVEL

11	D1 VV	2RM	
			L1
1.2	South West / SW ✓✓	2M	L1
1.3	Golden Gate National Park. ✓✓	2RM	L1
1.4	Option 1 Actual Distance = $174 \times 1000\ 000 \checkmark$ = $174\ 000\ 000\ \text{mm}\checkmark$ = $174\ 000\ 000\ \div 1000\ 000$ \checkmark = $174\ \text{km}\checkmark$ Option 2 Actual Distance = $17.4 \times 1000\ 000\ \checkmark$ = $17\ 400\ 000\ \text{cm}\ \checkmark$ = $174\ \text{km}\ \checkmark$	1 M Multiplying 1CA 1M Divide by 1000 000 1A 1M Multiplying 1CA 1M Divide by 100 000 1A	L3
1.5	Average Speed = 192.4 ÷0.5 ✓ ✓ = 384.8 km/h ✓	1 SF 1 C Convert minutes 1 CA	L2
			[13]

Ques.	Solution	Explanation	Levels
2.1	Capacity is the total amount/quantity (of water) that can be contained / an empty container can hold. $\checkmark\checkmark$	2J Explanation	L1
2.2	Range = 480 188 000 – 31 767 000 ✓✓ = 448 421 000 m ³ ✓ = 448,42 million m ³	1M Concept of Range 1SF Substitution 1CA Answer	L2
2.3	31,767 33,517 58,644 130,010 164,095 480,188 Median = $(58,644 + 130,010) \div 2 \checkmark \checkmark$ = 94, 327 million m ³ = 94 327 000 m ³ \checkmark	1M Concept of median 1SF Substitution of correct values. 1CA Answer	L2
2.4	Voelvlei dam ✓	1A Answer	L1
2.5	Current amount of water = $64,5\% \times 130,010$ $\checkmark \checkmark$ = $83,85645$ million m ³ = 84 million m ³ \checkmark	1RT Correct values 1M % Calculation 1R Rounding	L2
2.6	Steenbras Upper ✓	1A Answer	L1
2.7	Voelvlei Dam ✓ Berg River ✓	2A Answer	L1
2.8	Average % decrease = $99,9 - 71,1$ X 100% \checkmark 99,9 = 28,828% = 28,83 % \checkmark	1RT Reading from a table 1SF Substitution 1CA Answer	L2
			[18]

Ques.	Solution	Explanation	Levels
3.1.1	3 161 535 + 1 418 288 + 5 937 471 + 5 056 518		L2
	+ 584 830 + 2 436 112 + 1 827 935 + 1 651 242	2CA Answer	
	+2900567 -24074408.444		
	- 24 974 498 * *		
3.1.2	Kwazulu Natal ✓✓	2RT Reading	L1
		from Table	
3.1.3	% Male voters = $100\% - 60\% = 40\% \checkmark$	1M Calculating	L3
	= 0.0807002	1M Method	
	= 9 989 799 ✓	(Check answer	
		from 3.1.1	
		above)	
		1CA Answer	
3.1.4	584 830Northern Cape	0.0.0.0.0.0.0	
	1 418 288 Free State	3A Answer	L1
	1 651 242 North West		
	1 827 935 ✓✓✓ Mpumalanga		
	2 436 112 Limpopo		
	2 900 567 Western Cape		
	3 161 535 Eastern Cape		
	5 056 518 Kwa-Zulu Natal		
	5 937 471 Gauteng		
0.1.5			
3.1.5	% of "Other" votes = $100\% - (53,91\% + 26,9\%)$	1M Subtracting	L2
	(+0, 19% + 4, 25%) = 100% - 93.25%	from 100%	
	= 100 % = 33,23 %	1CA Answer	
3.1.6(a)	Voters in 2011 = <u>100% X 5 056 518</u> ✓	1M Calculation	L3
	101,20%		
	= 4 996 559,289 votes ✓	1A Answer	
	= 4 996 559 votes ✓	1R Rounding	
3.1.6(b)	Gauteng 23,22%		
	Western Cape 21,96%	1A for each two	L2
	North West 19,77%	provinces	
	Limpopo 14,97%	arranged	
	Free State 13,34% ✓ ✓ ✓ ✓	correctly.	
	Fastern Cane 8 53%		
	Northern Cape 8 53%	(Arrangement in	
		ascending order	
	No level 4	Maximum 2	
		Marks)	
			[19]

MARKS:55

QUESTION 1

The grade 12 class of Mazibuko secondary school wants to sell "vetkoek" with a mince filling to generate funds for the matric farewell. The ingredients of the recipe for the mince filling as well as the prices they negotiated at the local supermarket are shown on the tables below. The total amount needed for the matric farewell planned for 100 learners and 5 Educators with their partners, is R60 000,00.

GRADE 12 CURRY MINCE FILLING FOR 50 VETKOEK'S

TABLE 1:

Ingredients for curry mince

3 large onions

- 2 kg mince
- 3 cups water
- $1\frac{1}{2}$ teaspoons salt
- $\frac{3}{4}$ cup vinegar
- 4 large carrots (grated) 4 large potatoes (diced)
- 3 tablespoons apricot jam
- 2 tablespoons chutney
- 3 tablespoons sugar
- 1 teaspoon mild curry powder
- $1\frac{1}{2}$ teaspoons hot curry powder
- 2¹/₂ tablespoons turmeric
- 1 packet Oxtail soup powder

TABLE 2:

Prices negotiated at a supermarket

Mince:	R49 per kg
Carrots:	R6 for 1 kg (6 large carrots in 1 kg)
Potatoes:	R30 for a 10kg pack
	(5 large potatoes in 1 kg)
Onions:	R30 for a 10 kg pack (4 large onions in 1 kg)
Vinegar:	R15 for a 2 litre bottle
	R8 for a 750 ml bottle
Sugar:	R9 for a 1 kg packet

It will not be necessary to buy the following items, as they will be donated :(FREE) Salt Curry powder (hot and mild) Turmeric

NOTE:

1 Carefully study the recipe on table 1 and the notes to answer the following questions:

1.1	How many milliliters of mild curry powder are needed?	(2)
1.2	How many milliliters of chutney are needed?	(3)
1.3	How many litres of water are needed?	(4)

QUESTION 2

Study the prices given in table 2 above to answer the following questions:

- 2.1 How many potatoes are there in a 10 kg bag? (2)
- 2.2 How many onions are there in a 10 kg bag? (2)
- 2.3 Show by calculation that the recipe can be made twelve times (call this bulk) with a 10 kg bag of potatoes. Round down to the nearest (3) integer.
- 2.4 Now calculate the metric quantities of the following ingredients: carrots, potatoes, Apricot jam and sugar needed to make the recipe (11) twelve times.
- 2.5 The school provided the learners with R1500.00 to start their (12) fundraising activity. Use annexure A to verify if this amount will be enough to buy all ingredients they need for the bulk recipe.
QUESTION 3

3 The matric farewell is planned to be held at Indaba Conference Centre, and the Conference Centre is offering the following rates:

- 1. Venue costs R285, 00 per person (Meals included)
- 2. Décor costs R12000,00

The grade 12 learners will pay R285 per person for entry.

- 3.1 The learners sell 300 vetkoek every week for 12 weeks. They charge (5) R10, 00 for each vetkoek. Calculate the profit they will make if the cost for each vetkoek is R3,80
- 3.2 Use the answer in 3.1 to determine if the money made is enough or not, (6) to subsidize the farewell. If not give 3 possible ways of raising more income.
- 3.3 Write down three facts of advice that you can give to other learners who (5) would want to engage in a fundraising activity

6.2.4.(b) Investigation 1 Memo

6.2.4. MAR	6.2.4. INVESTIGATION 1 MEMO: MARKS:55						
		Ι	「 <i>.</i>				
1.1	1 teaspoon ✓RT		1 RT				
	= 5 ml ✓A	L1	1 A				
1.2	2 tablespoons √RT		1 RT				
	= 2 × 12,5ml	L1	1 M multiplication by 12,5				
	= 25ml ✓CA		1 CA				
1.3	3 cups ✓		1 RT				
	= 3 × 250ml ✓M	L1	1 M multiplication by 250				
	= 750ml ✓CA		1 CA				
	= 0,75litre ✓C		1 Converting to litre				

2.5	Carrots:	8kg needed @ R6/k	g		
		Cost = 8 x R6 ✓MA		L3 =	1 Method with Accuracy
		= R48 ✓CA		11	1 Accuracy
	Vinegar: (2	litre and 250 ml) neede	ed	L4 = 1	
	Buy 2 li bottle	tre @ R15 and one 750	ml		1CA
	Cost = F R23 √CA	₹15 + R8	=		
	Chutney:	Buy 460g @ R13			1 Accuracy
		= R13 √A			
	Soup powd	ler: 12 Packets needed			1CA
		$Cost = 12 \times R3$	=		1 Accuracy
	R36 √CA				
					1 Accuracy

Q2	SOLUTION	TL		EXPLANATION			
2.1	10 × 5 √MA		1 N	I multiplication			
	= 50 potatoes ✓CA	L1	1 C	1 CA			
2.2	10 × 4 √M	L1	1 N	I multiplication			
	= 40 onions ✓CA		1 C	A			
2.3	50 ÷ 4 ✓ MA		1 N	IA			
	= 12,5 ✓CA	L1	1 C	A			
	≈ 12 (rounded down)		1 R	ounding			
2.4	Potatoes: $12 \times 4 \checkmark MA$ = 48 potatoes $\checkmark A$ Metric quantity = 48 ÷ 5 potatoes/kg \checkmark MA = 9,6 kg \checkmark CA Apricot jam: 12×3 tablespoons $\checkmark MA$ = 36 tablespoons $\checkmark A$ Metric quantity = 36 x 12,5 ml $\checkmark MA$ = 450ml = 450g \checkmark CA Sugar: 12×3 \checkmark tablespoons = 36 spoons $\checkmark A$ Metric quantity = 36 x 12,5 = 450ml = 450g \checkmark CA	L2	1 N 1 A 1 N 1 C 1 N 1 A 1 C 1 A 1 C 0 ne [11]	I multiplication by 4 # carrots A division by 6 A # kg I multiplication by 4 # potatoes A division by 5 A # kg tablespoons A # ml (or g) Accept any 2			
	Potatoes: buy 10 kg@ R30 =R30√A						
	Aprication: 1500 peoded			1 Accuracy			
	Apricot Jam: 450g needed						
	Buy 900g tin =R15 √A			1Method Accuracy			
	Sugar: 450g needed						
	Buy 1kg	=R9 √A		1 CA			

Mince: 12 x 2kg = 24Kg needed ✓ MA	1 CA
@49/kg	1 Opinion / Reason
Cost = R49/Kg x 24Kg = R1176 ✓CA	[12]
Onion: @ R30 a bag = R30	
Total Cost for bulk recipe per week = R1380√CA	
The money provided is sufficient √ O	

Q3	SOLUTIONS	TL	MARKS
3.1	Income = 300 ×R10 ×12 √MA		1 MA multiplication
	= R36 000 ✓CA	L2	1 CA
	Expenditure	5	
	= [(R1380 ×12)+ (R3,80×300)] ✓ MA		1 MA
	= R17 700 √CA		1 CA
	Profit = R36 000 - R17 700 √M		1M
	= R18 300 √ CA		1 CA
3.2	The funds raised are not sufficient to fund	L4	3 Justification
	the matric farewell. $\checkmark \checkmark \checkmark J$	6	
	The grade 11 learners can host other fundraising events namely:		1 mark for each opinion x 3
	 ◆ Fashion show/ Talent show. ✓O ◆ Cake cale ✓O 		(any possible
	 ♦ Cake sale. ♦ Raffle ♦ O 		fundraising)
3.3	 Have more than one type of 	L4	1 Mark for each
	fundraising ≁ O	5	Opinion
	 Divide learners into groups so you have more than one way of making income 		
	 ↔ Do not focus on one aspect all the time ✓ O 		
	TOTAL		54

6.2.5.(a) Investigation 2

MARKS:50

INSTRUCTIONS AND INFORMATION

- 1. Carefully read the given scenario before answering the questions. Answer ALL the questions.
- 2. 2.1 Use ANNEXURE A to answer QUESTION 4. 6.

Answer QUESTION 5.1.on the attached ANNEXURE B.

2.2 Write your NAME and GRADE in the spaces provided on the ANNEXURE. Hand in ANNEXURE A and B with your ANSWER BOOK.

George, a businessman, lives in Gauteng. In one month he must travel to Cape Town to visit his three business sites. The first site is in Cape Town which is 9 kilometres from the airport, the second site is in Paarl and is 60 kilometres from the airport and the third site is in Bellville and is 30 kilometres from the airport. George visits one site per day, travels back to Gauteng and comes back the following day to visit another site.

In this **INVESTIGATION you will be required to advise George as to which of the two rental companies offers the cheapest rate** for each of the three days he will require a car to visit the sites.

George collected the following information from advertisements of car hiring companies at Cape Town International Airport.

Eezy Bucs Cars

Only R10 per kilometre

Power steering, radio and air condition. Car fully serviced Budget Taxi service

Convenient travelling for only R100 **basic fee** plus R5 per kilometre Power steering and radio. Car fully serviced

QUESTION 1 ANSWER THE FOLLOWING QUESTIONS.

1.1.	What does the term <i>basic fee</i> mean as used in the advertisement?	(2)
1.2.	How many car hiring companies did George consult?	(2)
1.3.	Which car rental company offers the cheapest rate per kilometre?	(2)
1.4.	The formula used to calculate the cost of hiring a car from Eezy	
	Bucs Cars is:	
	Cost (in Rands) = R10 x n, (where n is the number of	
	kilometres travelled)	
1.4.1.	How much will George pay for the return trip to Paarl if he hires	(2)
	from Eezy Bucs Cars?	
1.4.2.	The car that George used to Paarl has the fuel consumption rate	
	of 5, 2 litres per 100 km. The cost of petrol on the day was R11,	
	90 per litre.	
1.4.2.1	Calculate the cost of petrol for the trip to Paarl.	(4)
1.4.2.2	Determine the profit Eezy Bucs Cars made from that trip	(2)
	(excluding wear and tear cost).	
	Use the formula: Profit = Income – Cost	
1.4.3	How many km must George travel to his site in Bellville?	(2)
1.4.4	Write down a formula for calculating the cost of hiring from	(2)
	Budget Taxi service.	
1.4.5	It takes George 0, 45 hours to travel from the airport to Bellville,	(2)
	write the duration of his trip in minutes.	

	QUESTION 2										
2.1	The table below compares the hiring cost for the car								(4)		
	hiring companies: Complete the table below.										
Distance (in Km))	0	10	20	30	40	50	60	70	80	90
Eezy Bucs Cars Rands)	(cost in	0	100	200	300	400	500	600	700	800	900
Budget Taxi serv (cost in Rands)	/ice	100				300					
2.2	The g	raph in	Anne	xure A	shows	s the g	raph re	eprese	enting		
	the co	st of hi	ring fr	om Ee	zv Bud	s Cars	s for di	fferent			
	kilome	etres.	0		5						
2.2.1.	On the	e same	set o	faxes	draw t	he gra	ph tha	t		(4)	
	repres	ents th	ne hirir	ng cost	ts from	Budge	et Taxi	i servio	ce.		
	Clearl	y label	your g	graph.							
2.2.2	On a certain day George hired a car from Budget Taxi							(2)			
	services and paid an amount of R450. Use your graph										
	to esti	to estimate the distance that George travelled on that									
	day	day									
2.2.3	If on th	ne first	day G	eorge	decide	es to vi	sit his	uncle	who	(4)	
	lives 2	20 km f	rom th	e airpo	ort befo	ore goi	ng for	the sit	e		
	visit in	Cape	Town	in the	same	directio	on, wh	ich of	the		
	two co	mpani	ies will be the cheapest option.								
	Show	your c	alculat	tions to	o supp	ort you	r ansv	ver			
2.3.	Name	three	other of	conside	eration	s that	Georg	e mus	t	(3)	
	take ir	nto acc	ount b	efore	choosi	ng a ca	ar hire				
2.4.	Using	the gra	aph, e	xplain	in your	r own v	vords	what is	6	(5)	
	happe	ning a	t 10 kr	n, 20 k	m and	l 30 km	n respe	ectively	y in		
	terms	of the	cost. F	Provide	e a suit	able c	onclu	sion th	nat		
	will he	lp Geo	orge in	makin	ig his c	decisio	n				
2.5.	Give a	reaso	n why	the gr	aph fo	r Budg	et Tax	i servi	се	(2)	
	does not start at (0; 0), the origin.										

2.6.	Use your COMPLETED TABLE or GRAPH to advise	(3)
	George on the cheapest car hiring option for each of	
	his site visits.	
2.7	George travels from his home to visit his three sites on	(3)
	three consecutive days.	
	What advice can you share with George based on his	
	travelling arrangements as mentioned earlier, and	
	provide two substantial reasons for this advice.	
		[50]

ANNEXURE A

GRAPH REPRESENTING THE HIRING COSTS OF EEZY BUCS CARS

COST IN RANDS

6.2.5.(b) Investigation 2 Memo

MARKS:50

Question s	Solutions	Marks	Explanation	Levels
1.1.	Basic is the amount paid irrespective of the number of kilometres travelled $\checkmark \checkmark J$	2	J	TL 1
1.2.	Two√√A	2	Α	TL 1
1.3.	Budget Taxi service ✓ ✓ RD	2	RD	TL 1
1.4.1.	Eezy Bucs cost (Rands)	2	MA- return	T I 0
	= R10 x number of km		distance	IL 3
	= R10 x 60 x 2√MA		CA - answer	
	= R1200 ✓CA			
	OR			
	Eezy Bucs cost (Rands)			
	= R10 x number of km			
	= R10 x 120√MA			
	= R1200 ✓CA			
1.4.2.1.	Amount of petrol = $\frac{5,2 l}{100 km}$ x 120km \checkmark MA Amount of petrol = 6,24 litres \checkmark A	4	MA - multiplying by 120 A - amt.	TL 3
	Cost of petrol = $0,24$ integ x RT1.50 /2 Cost of petrol = R74,26 \checkmark A		petrol M - multiplication A - cost	
1.4.2.2.2.	Profit = Income – Cost		<u>ег</u>	ті о
	= R1200 – R 74, 26√ SF	2	SF - substitution	ILZ
	= R 1125,74 ✓A		A - answer	
1.4.3.	30 km√√A	2	A	TL1
1.4.4.	Budget: Cost(Rands)	2	MA	TI O
	= R100 + R5 x number of km√√MA			IL 2
1.4.5.	Duration = 0,45 x 60 ✓ MA	2	MA	TL1
	= 27 min√A		A	

1.4.6.	ANN	IEXURI	ΕA					4	А		TL2
	QUESTION 2										
2.1.		For every 2 correct values, 1 A mark					ark	4 TL2			
Distance (in Km)		0	10	20	30	40	50	60	70	80	90
Eezy Bucs Cars (cost Rands)	in	0	100	200	300	400	500	600	700	800	900
Budget Ta service (cost in Rands)	xi	100	150	200	250	300	350	400	450	500	550

Quest1.	Solution	Marks	Explanation of mark allocation	Level
2.2.1	See the graph on the annexure	4	1A for every 2 correct values	TL2
2.2.2.	51 -52 km ✓ ✓ RG	2	A	TL 2
2.2.3	Budget Taxi service. ✓RG Total km = 20km + 11km = 31 km ✓A Budget Taxi = +/- R250,00√RG Eezy Bucs = +/- R325,00√ RG	4	A	TL 3
2.3	 Enough money√ Comfort ability of the car√ Safety of the car√ Beauty of the car If the cars are available Distance to travel Brand of the car (name of the manufacturer) 	3	O/ Any three valid reasons	TL 4
2.4	 At 10 km Eezy Bucs cars is cheaper than Budget Taxi. ✓J At 20 km Eezy Bucs cars and Budget taxi service are charging the same amount ✓J At 30 km Budget Taxi Service is cheaper than Eezy Bucs cars ✓J CONCLUSION: Eezy Bucs should 	5	J	TL 4
	 CONCLUSION: Eezy Bucs should be used for trips less than 20km but 			

		Budget Taxi Service should be used for trips greater than 20km. ✓✓J			
2.5	٠	If you choose Budget Taxi, you have to pay the basic amount on top of the kilometres rates $\checkmark \checkmark O$	2	0	TL 4
2.6	•	For the Cape Town trip the cheapest option is Eezy Bucs Cars ✓RT For the Paarl trip Budget Taxi	3	RT - No other	TL 2
	•	For the Bellville trip Budget Taxi service will be the cheapest ✓RT		acceptable	
2.7.	•	George should find suitable accommodation after his visits to his sites. \checkmark O This could save him a lot of money in his flight costs. \checkmark J This would also allow him to rest because so much of travelling can cause fatigue. \checkmark J OR George could take direct flights to his next site and then take up accommodation. \checkmark O He will save on flight costs. \checkmark J He will be more rested the next day. \checkmark J	3	J	TL4

GRAPH REPRESENTING THE HIRING COSTS OF EEZY BUCS CARS

MARKS:65

INVESTIGATION: Why are squash balls packaged in rectangular boxes? Introducing the problem

Squash is a racket sport played by two or four players in a four walled court with a small, hollow rubber ball called a *squash ball*

**

N.B: The following extra resources will be needed to complete this investigation: scissors; glue; A4 papers/cardboards, colouring pens and a ruler. The teacher can assist by bringing this for learners.

Have you ever noticed that *squash balls* are often sold in rectangular boxes? This seems a bit strange given that squash balls are round (i.e. spheres) and so there must be lots of wasted space between the round ball and the rectangular box.

Throughout the remaining sub-sections below you are going to investigate the following question:

Would it not be more space and cost effective to package three squash balls in a cylindrical container rather than a rectangular box?

Part 1: The dimensions of a squash ball as measured (No Marks- determine diameter to be used in the investigation) The width of the ball across the middle of the ball (i.e. the diameter of the ball)

Hint:

A good way to do this is to position the ball between two books and to measure the length of the gap between the books.

Findings:

A standard squash ball has a diameter of 40 mm (4 cm) and a radius of 20 mm (2 cm).

Picture source:

Part 2: Determining dimensions and building containers for the balls

(Note: none of the pictures given below are drawn to scale)

2.1 The picture alongside shows a 3D view of a *rectangular box* used for packaging 3 squash balls.

Use the diameter value that you determined in Part 1 above to write down the dimensions of the height, width and length of this box, and explain how you have determined these dimensions

- 2.2 The picture alongside shows a 2dimensional 'net' of what this box will look like when it is unfolded.
 - 2.2.1 Write down the lengths / dimensions of the sides labelled A, B, C and D.
 - 2.2.2 Redraw the net on a blank piece of paper or light cardboard. You must draw the net in 'real-size':
 i.e. according to the dimensions of what the rectangular box must be to fit three squash balls. Make the glue flaps 1 cm high.

Now fold the net along the dotted lines and glue the flaps to the sides adjacent to the flaps to form a 3-dimensional box.

(Make sure that you don't glue the lid shut or you won't be able to get the squash balls inside.)

(6)

2.3 The picture alongside shows a 3-dimensional view of a *cylindrical container* that could be used for packaging 3 squash balls.
(Note: the cylindrical box will need to have a lid and a bottom or base so that the balls don't fall out)
What are the dimensions of the length, height and width of this cylindrical container?

Glue flap

Fold line

В

- 2.4 The picture alongside shows a2-dimensional 'net' of what this cylindrical container will look like when it is unfolded.
 - 2.4.1 Which side of the cylinder the length, width or height does the side labelled 'A 'represent? Explain your answer and write down the dimension of side A. (2)
 - 2.4.2 Write down the dimension (size) of the length indicated by the (2) letter 'B'.
 - 2.4.3 (a) The dimension indicated by the letter 'C' is the same as the *circumference* of the lid or base. Explain why this is the case. (2)
 - Use the formula below to determine the circumference of the lid and, hence, the dimension of the side labelled as 'C'.
 Round off the answer to one decimal place:

Circumference = π × diameter (where π =3,142)

2.5 Redraw the net for the cylindrical container on a blank piece of paper or light cardboard and fold the net to make the container, according to the following instructions:

You must draw the net in 'real-size', according to the dimensions for 'A', 'B' and 'C' above.

Make the glue flap 1 cm wide.

)

For the *lid* and the *base* of the container, use the 'net' alongside and cut, fold and glue as instructed to make the lid look like a lid for a cool-drink bottle.

- 2.6 2.6.1 Do you think the squash balls will fit easily inside the containers? (2)Explain
 - 2.6.2 If you were to make the containers again, how could the (2) dimensions of the containers be adjusted to get the balls to fit more easily?

[30]

Part 3:

Comparing volumes :

ર		1
J	٠	

	3.1.1	What does it mean to talk about the 'volume' of the rectangular box or cylindrical container?	(2)
	3.1.2	Without doing any calculations, explain whether you think the rectangular or cylindrical box will have the greater volume.	(2)
3.2	Determ	nine the volume of the rectangular box for packaging 3 squash balls.	
	Use thi	is formula: Volume of rectangular box= length × width × height	(2)
3.3	Determ balls, ι place.	nine the volume of the cylindrical container for packaging 3 squash ising the following formula. Round off the final answer to 1 decimal	
	Volum	e of a cylinder = π × (radius of lid) ² × length of cylinder	(3)
3.4	Compa differer in each	are the volumes for the two containers and explain what the nce in volumes tells us about the amount of wasted or unused space n container.	(2)
Com	paring s	surface areas:	()
3.5	What c	loes it mean to talk about the 'surface area' of a box?	(2)
3.6	Use th calcula	e 2-dimensional picture of the 'net' of the rectangular box to te the surface area of that box. Show all workings.	(5)
3.7	Use th calcula use the	e 2-dimensional picture of the 'net' of the cylindrical container to ate the surface area of that box. Show all workings. You may want to e following formula for part of the calculation:	
		Area of a circle = $\pi \times (radius)^2$	(7)
3.8	Based materia manufa	on your answers in 3.6 and 3.7 above, which container uses more al when constructed? Which container possibly costs more to acture (in terms of the quantity of material used only)?	(2)
<u>Whic</u>	h box s	hape would be the best choice?	
3.9	Based • • To pac	on your answers in the questions above, would it make more sense: from a mathematical perspective in terms of optimal usage of space in terms of quantity of material needed kage squash balls in a rectangular box or a cylindrical container?	
	Explair	1.	(2)
			[29]

6.2.6. (b) Investigation 3 Rubric

MARKS:60

INVESTIGATION: WHY ARE SQUASH BALLS PACKAGED IN RECTANGULAR CONTAINERS

Part 1 :Overview			
Term	Торіс	Section(s)	Contents covered
3	Measurement	Calculating perimeter, area and volume	Surface area and volume calculations
	Maps, plans and other representations of the physical world	Plans and models	Interpreting 2-D and 3-D diagrams Building models

Analysis Grid				
Distribution of		Taxonom	ny Level	
marks	Level 1	Level 2	Level 3	Level 4
Total marks (/60)	23	15	13	9
%	38%	25%	22%	15%
Expected %	30%	30%	20%	20%

Part 2: D	Part 2: Determining dimensions and building containers (/32)			
Ques	Solution	Level	Mark	
			s	
2.1.	<u>Length</u> = 3 × balls = 3 × 4 cm \checkmark = 12 cm \checkmark			
	<u>Width</u> = 1 ball = 4 cm \checkmark <u>Height</u> = 1 ball = 4 cm \checkmark	TL 1	4	
2.2.1.	A = 12 cm \checkmark ; B = 4 cm \checkmark ; C = 4 cm; \checkmark D = 4 cm. \checkmark	TL 1	4	
2.2.2	Redrawing the picture ✓ ✓			
	Drawing using the correct dimensions $\checkmark \checkmark$.			
	Folding to make a container. $\checkmark \checkmark$	TL 2	6	
2.3	<u>Length</u> = $3 \times \text{balls} = 3 \times 4 \text{ cm} = 12 \text{ cm} \checkmark$			
	<u>Width</u> = 1 ball = 4 cm \checkmark <u>Height</u> = 1 ball = 4 cm \checkmark	TL 1	3	
2.4.1	Side A represents the length with a measurement of			
	12 cm. \checkmark i.e. If the cylinder is rolled up so that the glue			
	flap is rolled around towards side A, then the side			
	shown as A becomes the longest side of the cylinder.			
	✓	TL 2	2	
2.4.2	4 cm (40 mm) $\checkmark \checkmark \rightarrow$ i.e. the same as the diameter of			
	the ball.	TL 1	2	
2.4.3(a)	When the cylinder is rolled up, the side labelled C will			
	then fit along the edge of the lid or base of the			
	cylinder $\checkmark \checkmark$. So, the length of side C is the same as the			
	distance along the edge (i.e. circumference) of the			
	lid/base.	TL 4	2	

(b)	Circumference = π × diameter = 3,142 × 4cm \checkmark		
	= 12,568 cm ≈ 12,6 cm√	TL 1	2
2.5.	Redrawing the picture ✓. Drawing using the correct dimensions. ✓ ✓		
	Folding to make a container $\checkmark \checkmark$.	TL 2	5
2.6.1	In all likelihood it means the balls will fit very tightly inside the different containers and it will be hard or impossible to close the lids on the containers properly. This is because the boxes were built using the exact dimension of the squash ball, so the boxes were built to fit the balls precisely. In order to allow for a bit of space so that the balls can fit more easily inside the containers, we should have worked with a slightly larger dimension than the exact dimension of the ball. $\checkmark \checkmark$	TL 1	2
2.6.2	Adjusting the diameter of the ball to 4,1 cm or 4,2 cm		
	would have created some extra space for the balls to fit more easily. $\checkmark\checkmark$	TL 4	2

Part 3: Comparing volumes and surface areas (/28)

Ques	Solution	Taxon omy	Mark alloca
3.1.1.	The volume of a container refers to the amount of 3- dimensional space inside the container/ (or the amount of 3-dimensional space that the container occupies). It is also	Level	
	useful to think about volume as referring to the amount of liquid that can fit inside a container. $\checkmark\checkmark$	TL 1	2
3.1.2.	Presumably the rectangular box: this is because when a rectangular container is developed for circular (spherical) balls then there is a large amount of wasted space in the box. \sqrt{If} a cylindrical container is developed for the balls then there will be far less wasted space. As such, the rectangular box designed for packaging three squash balls should have a bigger volume than a cylindrical box designed for the same purpose. $\sqrt{\sqrt{If}}$		
		TL 4	2
3.2	Volume of rectangular box = length × width × height = 12 cm × 4 cm × 4 cm√		
	= 192 cm³√	TL 1	2

	(Note to teacher: make sure to remind learners that the		
	answer must be expressed in units ³ because volume is		
	being determined and because this involves working with		
	three dimensions)		
3.3	Volume of a cylinder = $\pi \times r^2 \times \text{length}$		
	= π × (2 cm)² ✓ × 12 cm√		
	$= \pi \times 4 \text{ cm}^2 \times 12 \text{ cm}$		
	$= 3,142 \times 4 \text{ cm}^2 \times 12 \text{ cm}$		
	≈ 151,3 cm³√	TL 2	3
3.4.	As predicted, the volume of the cylindrical container is		
	smaller than the volume of the rectangular container \checkmark . This		
	suggests that there will be less wasted space in the		
	cylindrical container when packaging three squash balls. ✓	TL 4	2
3.5.	The surface area of a container is the total area of all of the		
	outside edges of the container \checkmark . For a cardboard		
	container, the surface area represents the amount of		
	<i>material</i> used in making the container. ✓	TL 1	2
3.6.	Surface area of the rectangular box		
	= (4 × area of side) + area of lid + area of base		
	$= 4 \times (12 \text{ cm} \times 4 \text{ cm}) \checkmark + (4 \text{ cm} \times 4 \text{ cm}) \checkmark + (4 \text{ cm} \times 4 \text{ cm})$		
	\checkmark		
	$= 192 \text{ cm}^2 + 16 \text{ cm}^2 + 16 \text{ cm}^2$		
	$= 224 \checkmark \text{ cm}^2 \checkmark$		
	(Note to teacher: make sure to remind learners that the		
	answer must be expressed in units ² because area is being		
	determined and because this involves working with two		
	dimensions).	TL 3	5
3.7.	Area of circular lid = $\pi \times (radius of lid)^2$		
	$= \pi \times (2 \text{ cm})^2 \checkmark$		
	$= 3,142 \times 4 \text{ cm}^2$		
	= 12,568 cm²✓		
	Area of base = area of IId $10,500,500$		
	= 12,568 cm²v		
	Area of body of the optindar - area of a reatengular		
	- length of A x length of B (from the nicture of the 'not')		
	$= 12 \text{ or } \times 12569 \text{ or } \checkmark$		
	$= 12011 \times 12,500 \text{ cm}^2$		
	-150,810 cm $+$		
	[14.5]. The relight of 5 was calculated iff 2.4.3 (D)		
	Total Surface Area		
	$= 150.816 \text{ cm}^2 + 12.568 \text{ cm}^2 + 12.568 \text{ cm}^2 \checkmark$		
	$= 175.952 \text{ cm}^2 \checkmark$	ТІЗ	7
		ILJ	1

	≈ 176 cm ²		
3.8.	The rectangular box has a greater surface area and so		
	uses more material. 🗸 🗸	TL1	2
3.9.	The cylindrical box has less wasted space and uses less material to make \checkmark . Based on this, it seems logical that the cylindrical container is the more cost efficient container for packaging squash balls. \checkmark	TL 4	2

6.3 Grade 12 Tasks

6.3.1 (a) Assignment 1

QUESTION 1

Mr Pitsi and his children have won the cruise challenge that was meant to encourage healthy life style. The family that managed to win a race for 5 consecutive weeks qualified for the prize. Before they can go on their journey, they went to Dr Dhlomo, the local doctor for a check-up; as they will compete with other teams on the 8000m challenge when they come back. Use the chart below to answer the following questions:

BMI FOR AGE PERCENTILE RANGE	WEIGHT STATUS
< 5 th percentile	Underweight
5 th to < 85 th percentile	Healthy
$85^{th} to < 95^{th}$	Risk of overweight
≥95 th percentile	Overweight

Formula: BMI = $\frac{Weight}{Height^2}$ may be used.

- 1.1 Determine Thami's health status who is 14 years old, and his BMI is (3) 21kg/m²
- 1.2 What advise do you think Dr Nchabeleng will give Mr Pitsi about his (3) son who is an 18 year old boy; and has the BMI of 17kg/m²? Give 2 advices.
- 1.3 Mr Pitsi claims that Pitso, his 15 year old son; who is 160cm tall and (5) weighs 60kg is healthy. Verify his claim.
- 1.4. 17 year old Thato is 170 cm tall and weighs 74.6kg.
- 1.4.1 Convert 170 cm to m.

(2)

1.4.2 Determine the minimum weight he has to loose in order for his weight (3) status to be classified as healthy if her ideal BMI should be 24.7kg/m².

[16]

Published May 30, 2000 (modified 10/16/00).

SOURCE: Developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Disease Prevention and Health Promotion (2000). http://www.cdc.gov/growthcharts

QUESTION 2

Mr. Kekana, a 45-year old male; is a financial consultant at Tshelang debt clinic, he receives a gross salary of R30 510.65 and an annual bonus equivalent to his gross salary. He contributes 7.5% of his basic monthly salary towards a pension fund (but not from his annual bonus). He registered as an official doner and donates 10% of his gross salary to Thusanang orphanage. He also pays medical aid for his 3 children. His wife was employed in March 2015 and pays her own medical aid.

Use the tax table below to answer the following questions.

2.1	What is the maximum amount that a 67 year old person has to earn in 2016; before he is liable to pay tax?	(2)
2.2.1	Calculate his annual income, excluding bonus.	(2)
2.2.2	Calculate his annual pension fund contribution.	(2)
2.2.3	How much does he contribute to the orphanage per annum?	(2)
2.2.4	Determine the annual taxable income.	(3)
2.3	Calculate his monthly income tax payable for the year ending 28 February 2016.	(7)
2.4	If Mr Kekana was 20 years, determine how much tax he was going to pay.	(3)
2.5	He confronted his manager to complain about the escalating tax, as he did not get an increment since last year. Show by calculations if his statement is true.	(6)

[27]

Tax rates (year of assessment ending 29/02/2016)

Tax brackets	Taxable income	Rate of tax (in rand)
A	0 – 181 900	18% of taxable income
В	181 901 – 284 100	32 742 + 26% of income above 181 900
С	284 101 – 393 200	59 314+31% of income above 284 100
D	393 201 – 550 100	93 135+36% of income above 393 200
E	550 101 – 701 300	149 619+39% of income above 550 100
F	701 301 and above	208 587 +41% of income above 701 300

Tax rates (year of assessment ending 28/02/2015)

Tax brackets	Taxable income	Rate of tax (in rand)
A	0 – 174 550	18% of taxable income
В	174 551– 272 700	31 419 + 25% of income above 174 550
С	272 701– 377 450	55 957+30% of income above 272 700
D	377 451– 528 800	87 382+35% of income above 377 450
E	528 801– 673 100	140 074+38% of income above 528 800
F	701 301 and above	195 212 +40% of income above 673 100

Tax Rebates	2016	2015
Primary	R13 257	R12 726
Secondary(65 years to less than 75 years)	R7 407	R7 110
Tertiary (75 years old and above)	R2 466	R2 367
Tax Threshold	2016	2015
Primary	R73 650	R70 700
Secondary(65 years to less than 75 years)	R114 800	R110 200
Tertiary (75 years old and above)	R128 500	R123 350

Medical aid credits in respect of month	Medical aid credits in respect of monthly contributions				
Tax Rebates	2016	2015			
Tax payer only	R270	R257			
First dependant	R270	R257			
Additional dependants	R181 each	R172 each			

QUESTION 3

Mr and Ms James used the bank calculator to investigate different bond repayment options over a 20-year period.

The quoted interest rate for the bond is 10,5%

They need to borrow R786 000.00. The bank calculator indicated that their minimum combined monthly gross income should be R 26 157.55 to qualify for a loan of this amount.

They also looked at the effect of paying an optional, additional monthly amount towards their bond. An adjusted summary of the results is reflected in the table below.

Use the table and the information above to answer the questions that follow:

	Amounts in R	Amounts in Rand				
	Minimum Monthly Payment	Additional Payment 1	Additional Payment 2	Additional Payment 3		
Additional Payment	0.00	500.00	800.00	1 000.00		
Monthly Repayment	7 847.27	8 347.27	8 647.27	8 847.27		
Loan Amount	786 000.00	786 000.00	786 000.00	786 000.00		
Total Interest	1 097 343.82	878 136.99	788 622.23	739 537.26		
Interest Saved	0.00	Α	308 721.59	357 806.56		
Total	1 883 343.82	1 664 136.99	1 574 622.23	1 525 537.26		
Loan Term	240.0	200.0	183.0	173.0		

Source: Adjusted from FNB Bank calculator – 21-06-2016

3.1 Determine the :

	3.1.1	Total interest payable if they make an additional payment of R500.00 per month.	(2)
	3.1.2	Total payable amount if they choose additional payment 3.	(2)
	3.1.3	Minimum monthly bond repayment for this loan.	(2)
3.2	The tota	I amount payable over 240 months is R1 883 343.82.	
	3.2.1	Show how this amount was determined.	(2)
	3.2.2	Provide a possible explanation for the difference in the total value.	(2)
3.3	Calculat they pay compare	e the value of A , the total amount that they will save in interest if an additional amount of R500 towards the bond every month, ed to just paying the minimum amount.	(2)
3.4	If they m repay th month w nearest	nake an additional payment of R1000 per month, they will be able to eir bond in 173 months. The amount that they will repay in the last vill differ from the other months. Calculate the last repayment to the rand.	(5)
3.5	Ms Jame a gross	es earns an annual gross income of R140 163.00. Her husband earns income which is 26,4% higher than her income.	
3.5.1	Calculat	e Ms James' monthly income.	(2)
3.5.2	Calculat	e Mr James' monthly income.	(2)
3.5.3	Show by	calculation that their joint income qualifies them to get the bond.	(2)
			[23]

Question 4

Mrs Maharaj started a business where she manufactures traditional wedding jewel items on order. Payment is made in advance.

- The material required to manufacture one item costs R55.00
- She sells each item for R120.00.

She needed R 4 000.00 to purchase the equipment that she required to start her project. (This amount excluded the material which is used to manufacture the actual jewel items). However, there was no money in her new business account, hence she applied for a R8 000.00 *overdraft** facility which was approved by the bank.

*An **overdraft** is an extension of credit from a lending institution when an account reaches zero. An overdraft allows the individual to continue withdrawing money needed up to the maximum amount granted, and to pay back in instalments as agreed with the bank.

4.1 Determine the percentage profit that Mrs Maharaj makes on each jewel item that she sells.

Use the formula

Percentage profit =
$$\frac{selling \ price - cost \ price}{cost \ price} \times 100\%$$

- (2)
- 4.2 Below is a set of graphs which reflect the status of some of the financial components of Mrs Maharaj's project:

- 4.2.1 Which of the graphs A, B or C, represents **Income from sales**? (2)
- 4.2.2 If Mrs Maharaj's expenses amounted to R8 000.00. How many (2) traditional wedding jewel items did she manufacture? Identify and use the graphical representation for the **Expenses** to find an estimated number of items.

[6]

6.3.1 (b) Assignment 1 Memo

Ques	Solution	Explanation		TL
1.1	Her BMI is between the 50th and the 75th percentile □ ∴ She is healthy □	1A correct percentiles 2J for status	(3)	L2
1.2	 His BMI is less than the 5th percentile Nutrition Health screen 	1A correct percentiles 2O , 1 per advise	(3)	L4
1.3	160cm = 1.6m□ BMI = <u>weight</u> Height ²	1C conversion	(5)	L4
	= <u>60</u> 1.6 ² □ = 23.44 kg/m ² □	1SF correct values 1A correct answer		
	Her BMI is between the 75th and the 85th percentile.□□ ∴ Her claim is valid, as she is healthy.□□	1CA correct percentile 10 correct opinion		
1.4.1.	170cm/ 100 = 1.7m 🗆	2C converting to m	(2)	L1
1.4.2	24.7 kg/m ² = <u>weight</u> □ 1.7 ² Weight = 71.1kg□ Weight to be lost = 74.6 kg - 71.1 kg = 3.5 kg□	1SF correct values 1A answer 1CA for the difference	(3)	L2
			[16]	

Q4	Solution	Explanation		TL
2.1	R114 800	2RT	(2)	L1
2.2.1	Annual salary = R30 510.65 x 12√	1M multiplying by 12	(2)	L1
	= R366 127.80√	1A correct answer		
2.2.2	Pension fund = 7.5% of R366 127.80√	1M multiplying by7.5%	(2)	L1
	= R27 459.59√	1A correct answer		
2.2.3	Donations = 10% of R30 510.65 ✓	1M multiplying correct	(2)	L1
	= R3051.07√	values		
		1A answer		
2.2.4	Annual taxable income		3)	L2
	= (R366 127.80 + R30 510,65) \checkmark – (R27 459.59 + R3051 07) \checkmark	1M adding bonus		
	=R396 638 45 – R30 510 66	1M subtracting both values		
	=R366 127.79√	1CA answer		
2.3	Income tax before rebates		(7)	L3
	=59 314+31% of income above 284 100√	1F correct formula		
	=59 314+31% of (366 127.79 - 284 100) √	1SF correct values		
	=59 314+0.31(82 027.79)			
	=59 314 + 25 428.61			
	=R84 742.61√	1A correct answer		
	Medical credits			
	=[(R270 x 2) + (R181 x 2)] x 12√	1M correct values		
	=R10 824√	1A correct answer		
	Payable tax			
	= R84 742.61-rebates-medical credits	1M subtraction		
	= R84 742.61- R13 257- R10 824√	1A correct answer		
	= R60 661.61√			
2.4	Payable tax		(3)	L4
	= R60 661.61- R7 407√	1M subtraction		
	= R53 254 61 🗸 🗸	2A correct value		

2.5	Income tax before rebates		(6)	L4
	=55 957+30% of income above 272 700 \checkmark	1F correct formula		
	=55 957+30% (366 127.79 - 272 700) ✓	1SF correct values		
	=55 957 + 0.3 (93 427.79)			
	=55 957 + 28 028.34			
	= R83 985.34√			
	Medical credits =[(R270 x 2) + (R181 x 3)] x 12	1A correct answer		
	=R12 996√	1A correct answer		
	Payable tax			
	= R83 985.34 – rebates-medical credit			
	= R83 985.34 - R12 726 - R12 996			
	= R58 263.34√	1A correct value		
	His statement is true as the tax for 2016 is more	1J conclusion		
	than for 2015. ✓			
			[27]	

Q4	Solution	Explanation		TL
3.1.1	Total interest payable = R 878 136.99	2RT – correct answer	(2)	
3.1.2	Total payable amount = R1 525 537.26	2RT – correct answer	(2)	
3.1.3	Minimum Monthly Repayment = R7847.27√√ RT	2RT – correct answer	(2)	L2
3.2.1	R 7847.27 × 240 ✓ M/A	1M- Multiply correct values	(2)	L2
	= R 1 883 344,80 ✓ CA	1CA- Follow up correct		
	(Value in table - R1883343.82)			
3.2.2	The decimals in the interest may have that effect $\checkmark \checkmark J$	2J – supply a valid reason which will fit into context	(2)	L4
	OR			

	The last payment is adjusted to settle the repayment in full $\sqrt[]{J}$			
3.3	Interest Saved =	1M- determine difference	(2)	L2
	1097343.82 - 878136.99√M	1A correct answer		
	= R219 206,83√1A			
3.4	The total payment if all instalments are same =		(5)	L3
	R 8 847.27 × 173 √M	1M- multiply by 173		
	= R 1 530 577.71 √A	1A – correct answer		
	Total Paid(bond calculator) = R1525537.26			
	Difference = R5 040,45 √CA	1CA – difference, between		
	Last instalment is	calculated and value in		
	R8 847.27 – R5 040.45√M	table		
	= R3 806.80	1M –determine CA difference		
	≈ R3 807 ✓ CA	1CA answer		
3.5.1	Her salary = R140 163.00 ÷12√	1M dividing by 12	(2)	L1
	= R11 680.25√A	1A – correct monthly salary		
3.5.2	His salary = R11 680.25 √×126,4%√	1M – adding 26,4%	(2)	L1
	= R14 763.83 √A	1A – Male salary		
3.5.3	Income = R11 680.25+ R14 763.83	2CA- Total income	(2)	L1
	= R26 444.08√CA			
			[23]	

Q4	Solution	Explanation		TL
4.1	Percentage profit = $\frac{120-55}{55} \times 100\% \checkmark$ = 118,18% \checkmark	 1SF-substituting correctly into given formula 1A-correct answer 	(2)	L2
4.2.1	A represents income from sales. ✓ ✓	2A -identifying correct graph.	(2)	L4
4.2.2	 (Accept values from 71 to 75) √√ She would have created approximately 73 items. 	3RG - selecting approximate number of items	(2)	L2
			[6]	

6.3.2 (a) Assignment 2

MARKS 60

QUESTION 1

1.1 The table below shows a time table for a bus service running from Pretoria to Durban

Bus Number		Gjd0830	Gjd1100	Gjd1400	Gjd1600	Gjd2200	Gjd2300
-		Mon & Wed	Tues	Wed & Fri	Thurs, Fri & Sun	Sat & Sun	Sun
Pretoria	Dep	06h15	09h30	12h30	15h00	20h30	21h30
Midrand	Dep	06h50	09h50	12h50	15h20	20h50	21h50
Johannesburg	Dep	08h30	11h00	14h00	16h00	22h00	23h00
Vereeniging	Dep	-	11h50	-	-	-	-
Harrismith	Dep	11h40	14h40	17h10	19h10	01h10	02h10
Swinburne	Arr	12h00	15h00	17h30	19h30	01h30	02h30
Swinburne	Dep	12h30	15h30	18h00	20h00	02h00	03h00
Estcourt	Dep	-	-	19h15	-	-	-
Howick	Dep	14h30	-	-	-	-	-
Pietermaritzburg	Dep	15h00	17h50	20h20	22h00	04h30	05h00
Pinetown	Dep	-	18h45	-	-	-	-
Durban Station	Dep	16h25	19h10	21h40	23h10	05h40	06h10
Durban Beach	Arr	16h40	19h25	21h55	23h20	05h55	06h25
Bus Number		Gdj0800	Gdj1100	Gdj1400	Gdj1600	Gdj2200	Gdj2300
		Tues & Thurs	Wed	Thurs & Sat	Sat	Mon & Tue	Mon
Durban Beach	Dep	07h15	10h15	13h15	15h15	21h15	22h15
Durban Station	Dep	08h00	11h00	14h00	16h00	22h00	23h00
Pinetown	Dep	-	11h25	-	-	-	-
Pietermaritzburg	Dep	09h15	12h30	15h10	17h00	23h00	23h55
Howick	Dep	09h45	-	-	-	-	-
Estcourt	Dep	-	-	16h30	-	-	-
Swinburne	Arr	11h45	15h00	17h30	19h30	01h30	02h30
Swinburne	Dep	12h15	15h30	18h00	20h00	02h00	03h00
Harrismith	Dep	12h35	15h50	18h20	20h20	02h20	03h20
Vereeniging	Dep	-	18h25	-	-	-	-
ohannesburg	Dep	15h45	19h30	21h30	23h00	05h00	06h00
Midrand	Dep	16h05	19h50	21h45	23h20	05h20	06h20
	1.	4 (1 20	401 40	001.05	001.15	OCL / F	01115

The table shows a timetable for a bus service running from Pretoria to Durban.

- **1.1.1** The top half of the table shows where the bus will stop on the route (2) from Pretoria to Durban. What information does the bottom half of the table show?
- **1.1.2** On what days of the week does the bus Gjd0830 travel from Pretoria (2) to Durban?

QUESTION 2

The following table shows the distance from Durban to the different towns.

Town	BL	СТ	EL	G	JHB	К	PE	Р
Distance	634	1753	674	854	588	811	984	646
(in km)								

		[12]
2.4	Use the provided annexure to draw a bar graph representing the distances from Durban to the various towns.	(4)
2.3	Find the median distance	(3)
2.2	Calculate the mean distance	(3)
2.1	Arrange the distances in ascending order	(2)

QUESTION 3

Thabo who stays in Pretoria got a new job as a technician in Durban. He intends to travel from Pretoria to Durban using a bus. He therefore investigated the cost of travelling from Pretoria to Durban using a bus through internet. He tabulated his findings as follows:

INTERCAPE	Pretoria to Durban		
	One-Way approx: R 270 - R 550		
	Departs Pretoria 4 times a day		
	approx. 8hrs 40min (616 km)		
GREYHOUND	Pretoria to Durban		
	One-Way approx: R 340 - R 450		
GREYHOUNE	Departs Pretoria 5 times a day		
	approx. 8hrs 30min (675.5 km)		
CITILINER	Pretoria to Pietermaritzburg		
--	---	-----	
Citiliner Safe and reliable transport at at ordable rates	One-Way approx: R 350 - R 480		
	Departs Pretoria once daily		
	approx. 7hrs 37min (591.9 km)		
	Pietermaritzburg to Durban		
	One-Way approx: R 190 - R 250		
	Departs Pietermaritzburg 5 times a day		
	approx. 1hrs 04min (79.8 km)		
Source: www.rom2rio.com/s/Preto	pria/Durban	J	
3.1 Give a possible reason wh	y the bus prices were given as a range.	(2)	
3.2 What does "Departs Preto	ria 4 times a day" mean in this context	(2)	

- 3.3 If Thabo decides to use Citiliner from Pretoria to Durban on a cheapest option.
 - 3.3.1 Approximately how much will he pay? (2)
 - 3.3.2 At what time will he arrive in Durban if Citiliner leaves Pretoria at (3) 9:00?
- 3.4 Why does each company reflect a different distance from Pretoria to (2) Durban?

[11]

TOTAL: 60

ANSWER SHEET A

NAME OF LEARNER:

QUESTION 2.4

6.3.2 (b) Assignment 2 Memo

QUESTION 1 [40]					
QUES	SOLUTION	EXPLANATION	TL		
1.1.1	The places where the bus will stop on the	20 explanation	1		
	route from Durban to Pretoria✓✓	(2)			
1.1.2	Mondays and Wednesdays ✓ ✓	2RT correct days (2)	1		
1.1.3	Vereenigeng, 🗸	4 RT correct towns	1		
	Escort, ✓				
	Howick and 🗸				
	Pinetown✓	(4)			
1.1.4	06h15, OR quarter past six ✓	1RT	1		
	This is in the morning \checkmark	10 (2)			
1.1.5	05h55, OR Five minutes to six	1 RT	1		
	In the morning	10 (2)			
1.1.6	21h55 – 12h30✓	1M subtracting	2		
	= 9 hours 25 minutes✓	1A time (2)			
1.1.7	No. 🗸	10	4		
	These times are reasonably reliable, but	1J			
	there is always the possibility of delays due				
	to weather conditions, road conditions,	(2)			
	traffic conditions and so on. ✓				
1.1.8	Gjd0830:	1A duration	4		
	16h40 – 06h15				
	= 10 hours 25 minutes √				
	Gdj0800:	1A duration			
	16h30 – 07h15				
	= 9 hours 15 minutes✔	10			
	The duration may be affected by:				
	 Wind direction 				
	Different engine capacities				
	Different driver's skills	(3)			
	Accept any appropriate explanation				

1.1.9	Estcourt to Pretoria:	1A identifying the bus	3
	The only bus that stops in Estcourt is the	1A days	
	Gdj1400✓	1A Departure and arrival time	
	The bus travels on a Thursday or Saturday✓	1A total travelling time	
	Departure time from Estcourt= 16h30 and arrival time in Pretoria = 22h05✓	1A identifying the bus 1A days	
	Total travelling time = 5 hours 35 minutes✓	1A Departure and arrival time	
	Pretoria to Howick:	1A total travelling time	
	The only bus that stops in Howick is the Gjd0830✓	(8)	
	This bus travels on a Monday and Wednesday		
	Departure time from Pretoria= 06h15 and arrival time in Howick = 14h30✓		
	Total travelling time = 8 hours 15 minutes \checkmark		
1.1.10	People encounter timetables all the time in daily life, from television timetables to	1 J	4
	transport timetables and study timetables. Being able to interpret timetables enables	(2)	
	people to plan their lives and complete activities and tasks. ✓✓		
1.2.1	646 km ✓✓	2RT (2)	1
1.2.2(a)	Consumption per km = $\frac{26}{100m}$	1A consumption per <i>l</i>	2
		1CA fuel needed	
	= 0.26 ℓ/KM ¥	(3)	
	litres needed = 0,26 ℓ/km × 646km✓		
	= 167,96 {✔		
1.2.2(b)	Fuel cost = 167,96 ℓ × R11 / ℓ ✓	1M multiply by R11/ ℓ	2
	= R1 847,56✓	1CA cost (2)	

1.2.3	Dis tance	1SF			3
	speed =				
	60 km/h = $\frac{646m}{\checkmark}$	1A (change subject		
	time	1CA	hours		
	Time = $\frac{646m}{60m/h}$	1C I	nours and minute	s (4)	
	= 10,77hours✓				
	= 10 hours 46 minutes✓				
QUESTIC	DN 2 [12]				
QUES	SOLUTION		EXPLANATION		TL
2.1	588, 634, 646,674,811,854,984,1753✔✔		2A ascending 2)	(1
2.2	Mean =		1M adding		2
	588+ 634+ 646+ 674+ 811+ 854+ 984+ 175	3	1M dividing		
	8		1CA answer		
	$=\frac{6944}{4}$			(3)	
	8				
	= 868✓				
2.3	Median = $\frac{674 + 811}{2}$		1M/A adding		2
	2		1M/A dividing		
	/40.5✔		TA median	$\langle \mathbf{n} \rangle$	
				(3)	

QUEST	QUESTION 3 [11]					
QUES	SOLUTION	EXPLANATION		TL		
3.1	Luxury busses have seats which are categorised	20 explanation		2		
	as standard and business which have different		(2)			
	prices. VV					
3.2	 Four buses leave from Pretoria to Durban 	20 explanation		1		
	at different times ✓ ✓		(2)			
3.3.1	R350 + R190✓	1A adding		1		
	= R540✓	1A answer				
			(2)			
3.3.2	09:00 + 7hrs37 min = 16:37✓	1A adding		2		
	16:37 + 1hrs 04min = 17:41 √	1A adding				
	He will arrive in Durban at 17:41 Or Nineteen	1CA arrival time				
	minutes to six✓		(3)			
3.4	Buses use different routes via different towns. ✓✓	20 explanation		4		
			(2)			

6.3.3 (a) Assignment 3

MARKS: 70

Question 1 (36)

In 2000 Mr Smith went off on retirement. At the end of 2000 he bought himself a new car for R120 000 cash. Every year the car's value depreciated by 8% per annum. At the end of 2002 he decided to invest R55 000 at 10,5% per annum compounded yearly at **Bank A (Investment A)**. His neighbour also invested R55 000 for the same period at 12% per annum simple interest at a different bank, **Bank B (Investment B)**.

Given below is the table Mr Smith used to keep track of his car and his investment.

Use the table below to answer the questions that follow.

At the end of …	2002	2003	2004	2005	2006	2007	2008
Value of Vehicle	R101 568	Α	R85 967	R79 090	R72 763	R66 942	В
Value of Investment A	R55 000	R60 775	R67 157	R74 208	R82 000	С	D
Value of neighbour's investment B	R55 000	E	F	R74 800	R81 400	R88 000	R94 600

Note: The values in this table are rounded off to the nearest rand.

1.1 Why does the value of the vehicle start at R101 568 at the end of 2002? (2)

- 1.2 Mr Smith says his car is depreciating in value. Explain the meaning of depreciation. (2)
- 1.3 Calculate the values of the vehicle at **A** and **B**. (4)
- 1.4 Investment B is calculated at 12 % per annum simple interest. Determine the value of F in the table above. (4)
- 1.5 At the end of 2008 Mr Smith's investment was R100 124 (**D**). Show how this value was determined. Show ALL calculations. (6)

- Draw neat graphs on ANNEXURE A of the Vehicle depreciation,
 Investment A and Investment B on the same system of axes. Clearly label the graphs. (10)
- 1.7 Describe the impact on the neighbour's investment compared to Mr Smith's investment if Bank B's interest rate increased to 13% per annum simple interest? Justify your answer by means of calculations. (3)
- At the end of 2004 Mr Smith was very sorry that he did not use Bank B. Would you have felt the same way? Why? (3)

Question 2 (34)

Build It quoted Mr Smith R20 000 to build a garage onto his house. He is looking for a cheaper option. He opts for a temporary drive-thru shelter as shown in the picture below.

The frame is made out of metal and is covered with a shade cloth (Note that the shade cloth will be attached in its length). The ground area must be a concrete floor of 10 cm thick. Refer to the table below and answer the following questions. Show ALL calculations:

Item	Cost
Metal	R109 per 6m length
Shade cloth	R512 per roll (each roll is 15 m long and 3 metres wide)
Concrete	R89/m ²

You may use the following formula: $\pi = 3,142$

Perimeter of a rectangle = 2(length + breadth)

Area of rectangle = length × breadth

Volume of rectangular prism = length × breadth × height

Circumference of circle = $2 \times \pi \times$ radius

- 2.1 Calculate the cost of the concrete
- 2.2 In calculating the total metal required, Mr Smith had to be reminded that the metal is sold in 6m lengths. Refer to the sketch below to determine the following:

(5)

2.2.1	Calculate how many lengths of metal are required for:	
(a)	The frame of the base.	(3)
(b)	The uprights.	(3)
(c)	The stabilizers	(2)
(d)	The semicircles (arches)	(5)
2.2.2	Calculate the total cost of the metal.	(3)

2.3 Mr Smith struggles with calculations and decided to use a tape measure to measure the width of one arch starting from the base of one upright to the base of the upright on the other side. It measured 13,1 m.

2.3.1	Convert 13,1 m to mm.	(2)
2.3.2	Determine how many rolls of shade cloth are required if one roll is	
	3 m wide.	(3)
2.3.3	Hence, determine the total cost of the shade cloth.	(2)

- 2.4 Calculate the total cost of all the material required to erect this temporary garage. (2)
- 2.5 Mr Smith thinks he should invest in a permanent garage but he is still unsure what to do because he likes the temporary garage. Explain two ways how you could convince Mr Smith to go for the temporary garage. (4)

ANNEXURE A

QUESTION 1.4

118

6.3.3 (b) Assignment 3 Memo

Ques 1	Solution	Explanation	TL
1.1	The car depreciated since 2000 ✓✓ O	20 (2)	4
1.2	When the value of an item decreases $\checkmark \checkmark O$	2O (2)	1
1.3	A = R101 568 – (8% × R101 568) ✓ MA	1MA	2
	= R101 568 – R8 125,44 ≈ R93 443 ✓ CA	1CA answer	
	B: R66 942 – 8% of R66 942 ✓ MA	1MA	
	= R61 586.64 ≈ R61 587 ✓ CA	1CA answer	
1.4	E: R55 000 + (12% × R55 000) ✓ MA	1MA	3
	= R61 600 ✓ CA	1CA answer	
	F: R61 600 + R6 600 ✓ MA	1MA	
	= R68 200 ✓ CA	1CA answer (4)	
1.5	C(2007) = R82 000 + 10,5% ×	1MA	3
	R82 000√MA	1M adding	
	= R82 000 + R8 610 ✓ M	1CA answer	
	- R 90 010 V CA	1MA	
	D(2008) = R90 610 + 10,5% ×	1M adding	
	R90 610√MA	1CA answer	
	= R90 610 + R9 514.05 ✓ M	(6)	
	≈ R100 124 ✓ CA		

1.8	Yes ✓ O	10	4
	He would have received more money		
	from Investment B at that time $\checkmark \checkmark$ O	20	
		(3)	
2.1	Calculating cost of concrete		1
	V = 12m × 5m × 10cm ✓S	1S Substitution	
	= 12m × 5m × 0,1m ✓C	1C Conversion	
	= 6 m ³ ✓ A	1A answer	
	Cost = R89 × 6 ✓M	1M multiplying	
	= R534 ✓ CA	1CA answer	
		(5)	
2.2.1	Frame: P = 2(12m + 5m) ✓ SF	1SF	2
(a)	= 34 m ✓ A	1A answer	
	≈ (34 ÷ 6) = 5.6		
	≈ 6 lengths	1R rounding	
		(3)	
2.2.1	Uprights: 4 × 2,6 m = 10,4 m ✓MA	1MA	2
(b)	≈ (10,4 ÷ 6 = 1,7 ✓ A	1A answer	
	≈ 2 lengths √R	1R rounding	
		(3)	
2.2.1	Stabilizers: 3 × 12m = 36 m ✓MA	1MA	2
(C)	≈ (36 ÷ 6) = 6 lengths √ A	1A answer	
		(2)	
2.2.1	Semi circle: (2 × 3,142 × 2,5 m) ÷ 2 ✓M	1MA radius = 2,5m	3
(a)	= 7,9 m ✓ S	1S simplification	
	≈ (7,9 ÷ 6) = 1,3 ✓ A	1A answer	
	≈ 2 lengths √ R	1R rounding	
	Total semi circles: 2 × 2lengths = 4	1S simplification	
	lengths ✓	(5)	
2.2.2	Total metal lengths = 6 + 2 + 6 + 4 = 18	1M adding	1
	Total cost of metal = 18 × R109 ✓ MA	1A multiplying with R109	
	= R1 962	1CA answer	
		(3)	

2.3.1	13,1 m × 100 ✓ M	1M	1
	= 1 310 mm ✓ A	1A answer	
		(2)	
2.3.2	Rolls = 13,1 m ÷ 3 m ✓ M	1M	1
	= 4, 4 m ✓ A	1A answer	
	≈ 5 rolls ✓ R	1R rounding	
		(3)	
2.3.3	Total cost of shade cloth = $5 \times R512 \checkmark$	1M multiplying	1
	Μ	1CA answer	
	= R2 560 ✓CA	(2)	
2.4	Total cost of material		1
	R2 560 + R1 962 + R534 ✓ M	1M adding	
	= R5 056 ✓ CA	1CA answer	
		(2)	
2.5	Costs		4
	The temporary garage is much cheaper /		
	the permanent garage will be too		
	expensive	20	
	✓ < O		
	Building/erecting time		
	Temporary garage can be erected within		
	a shorter period /		
	Permanent garage can take longer to	20	
	build	(4)	
	√ √ 0		

6.3.4 (a) Investigation 1

(2)

Instructions:

- 1. Answer all the questions.
- 2. Show all your calculations.
- 3. In question 1.5 where you should complete the tables it will be best if you do in each case at least one row of calculations on your answer sheet so that your teacher can see your thinking.
- 4. The tables can be completed on the Answer Sheet you don't have to redraw them.
- 5. Carefully follow instructions regarding rounding.
- 6. Write neatly and legibly.

This question paper consists of 8 pages including the Appendix and Answer Sheet

Question 1 [20]

School ABC is in need of a new photocopying machine. The SGB of School ABC requests the Grade 12 Mathematical Literacy class to investigate various options of different suppliers to find the most suitable photocopying machine for the school. In this investigation, you are going to assist the Grade 12 learners of School ABC to investigate various pay options for photocopying machines.

In **Annexure A**, the quotations for four different companies are shown. You will need the information in these quotations to answer the questions.

Study Quotation 1 in Annexure A and answer Question 1.

- 1.1 What is a quotation and what is its purpose?
- 1.2 Use the amounts just as it is given on the quotation and explain how you will (2) determine the total monthly cost to make "n" copies (where n is the number of copies made?
- 1.3 Explain what VAT is and also state what VAT stands for. (2)
- 1.4 What is meant with the statement: "All prices exclude VAT at 14%"? (1)
- 1.5 One of the SGB members of ABC high school states that the school will pay (8) the same amount per month, whether you first calculate the VAT on the rent and price per copy before you get the total, as opposed to when you first add the total cost and then add the VAT. Do an investigation and verify if this statement made by the SGB member is correct or not. Complete TABLE 1 and

TABLE 2, as well as the additional values at Table 2, as part of your investigation). Use the tables on the answer sheet for this. **Do not round off** any of your answers, unless stated otherwise (last column of table 2).

Number copies	of	Price copies without VAT Rand)	of (in	Rent copier without VAT (in rand)	of	Total amount for copies and rent without VAT (in Rand)	Total amount for copies and rent with VAT (in Rand)
0							
500							
1000							
1500							
2000							
2500							

 TABLE 1: Calculating total monthly cost and then VAT

TABLE 2: Calculating VAT on items and then determine total monthly cost

Price of one copy including VAT:

Cost to rent machine including VAT:

Number of Copies	Cost for copies including VAT (in Rand)	Cost for Rent of photocopier including VAT (in Rand)	Total monthly cost including VAT (in Rand)	Round the total monthly cost incl. VAT off to the nearest whole number (in Rand)
0				
500				
1000				
1500				
2000				
2500				

1.6 Round the answer of the price per copy including VAT, as well as the price for (1) renting the photocopying machine including VAT (for quotation 1) off to two

decimal places and write both values down. Rewrite your answer of 1.1 using these numbers.

1.7 Use TABLE 2 and draw a graph of total monthly cost (rounded to the nearest (4) whole number) against number of copies made for the first quotation by CC Copiers on the grid provided on the **ANSWER SHEET**. Extend the graph to the end of the grid (for 5 000 copies) and label the graph.

Question 2 [11]

Investigate Quotation 2 of Smith & Son and answer the questions that follow:

2.1 On what date will the quotation for Smith & Son expire?

(2)

- 2.2 **Explain in words** how the total monthly cost will be calculated for rent and (2) copies made according to the quotation of Smith & Son.
- 2.3 The following table shows the total monthly cost for rent and copies according (3) to the quotation of Smith & Son:

No of copies	0	500	1 000	1 500	2 000	2 500	С	4 000
Monthly cost	400	400	A	525	В	775	900	1 150

Calculate the value of A, B and C in the table.

2.4 Sketch the graph of the monthly cost against number of copies made for (4)
 Quotation 2 on the grid on the ANSWER SHEET. The last point on your graph should be for 5 000 copies

Question 3 [19]

Study **Quotations 3 and 4** to answer Question 3.1 and 3.2.

3.1 The graph that represents Quotation 3 is already drawn on the grid on the (3) ANSWER SHEET. What will be the values of D, E and F for quotation 3?

3.2 The graph that represents quotation 4 is also drawn on the grid on the ANSWER (2)SHEET. Write a formula to represent the total monthly cost for quotation 4.

Use all 4 quotations in APPENDIX A, as well as the 4 graphs on the grid on the ANSWER SHEET and answer questions 3.3 to 3.5.3:

- 3.3 Explain in words what happens at the point (1 400; 700) on the graph. Also, give (2) a name for this point.
- 3.4 It is estimated that school ABC makes 5 000 copies per month. A learner claims (2) that quotation1 will be the cheapest option for the first year. Describe in words how you can verify this statement using the graph on the Answer Sheet.
- 3.5 An SGB member makes the remark that it is important to note that the rent of the photocopying machine in **quotation 1** has an annual increase of 30%.
- 3.5.1 Explain the meaning of the word "**annually**". (1)
- 3.5.2 After how many years will the total annual cost for quotation 1 become more than the total annual cost for quotation 2? (5)
- 3.5.3 After 3 years, the contracts on both the machines of quotations 1 and 2 would expire. Would the fact that the total cost for quotation 1 becomes more than the total cost for quotation 2 imply that the SBG must rather choose quotation 2 if they want to go for the cheapest option? *Explain your answer* ⁽⁴⁾

APPENDIX A

QUOTATION 1

QUOT	ATION	
CC Copiers	Quotation	10. 3592
P/Bag 2150		
Bloemfontein	03/	01/2016
To: ABC school		
Bloemfontein		
Rent per month:	R438,60	
Cost per copy:	10,5 c	
Rent Increase per year	30 %	
Quotation valid for 14 days		
All prices exclude VAT at 14%		
Question 2.4		
QUOTATION 2		
AJ Smith & Son Office supplies		4841
Hill Street 12		
Bloemfontein		
QUOT	ATION	
Date of Quotation: 5/01/2016		
ABC School Bloemfontein		
Quotation valid for 30 days		
Rent per month	R400	
Price per copy	25 c*	
Yearly increase	0%	
*The first 1000 copies at no charge per copy		
All prices include VAT at 14%		
OUR SERVICE	E OUR PRIDE!!!	

Question 3.4

QUOTATION 3

Speck & Co. QUOTATION							
	Quotation Nr: 13/282						
To: ABC School Bloemfontein	Date: 07/01/2016 Contact person: Jason Cell: 072 345 6789						
Rent per month	D						
Price per copy	E						
Free copies included: F							
All prices include VAT at 14%	Quotation valid for 21 days from date of issue						
Thank you for your business							

QUOTATION 4

QUOTATION COPYING SOLUTIONS

Quotation no: 2325/7

Sim Street 15 Bloemfontein

Customer: Governing body, ABC School, Bloemfontein Date of quotation: 5/01/2016

All quotations valid for 14 days

Contract: No renting cost, R0,50 per photocopy

The best deals in town!

ANSWER SHEET

NAME: Gr. 12

Use the following tables to answer question 1.5. Also, write answers on the dotted lines. TABLE 1: Calculating total monthly cost and then VAT

Number c	of	Price of copies	Rent of copier	Total amount	Total
copies		without VAT (in	without VAT	for copies and	amount for
		Rand)	(in rand)	rent without	copies and
				VAT (in Rand)	rent with
					VAT (in
					Rand)
0					
500					
1000					
1500					
2000					
2500					

 TABLE 2: Calculating VAT on items and then determine total monthly cost

Price of one copy including VAT:

Cost to rent machine including VAT:

Number	Cost	for	Cost for Rent of	Total monthly	Round the total
of	copies	+	photocopier +	cost including	monthly cost incl.
Copies	VAT	(in	VAT (in Rand)	VAT (in Rand)	VAT off to the
	Rand)				nearest whole
					number (in Rand)
0					
500					
1000					
1500					
2000					
2500					

Conclusion:

.....

NAME: Gr. 12

Use the following grid to answer questions 1.7 and 2.4

6.3.4 (b) Investigation 1 Memo

	Question '	1 [20]									
1.1	A quotation	n is a form	al state	ement se	tting	out the e	estima	ated cos	st for a	1 E	
	particular job or service \checkmark . A quotation is given when people want to know how much an item will cost before buying it. \checkmark										(2)
	know how much an item will cost before buying it.										
1.2	Total monthly cost = 438,60 \checkmark + 0,105 \checkmark x n where n is the									1 RD	
	number of copies made										ł
	Or:	conve	rt to								
	The total monthly cost is R438, 60 ✓ plus R0, 105 times the number of										
	copies made.√										(2)
1.3	VAT – star	ids for Valu	le Add	ed Tax √						1 E	
	It is the tax	payable o	n good	ls bought	t and	services	deliv	vered √		1 E	(2)
1.4	That VAT	at 14% m	ust sti	ll be calo	culate	ed and a	Idded	to all o	quoted	1 E	(2)
	prices.√										
1.5										1 All v	alues in
										colu	mn 4
	TABLE 1:	Calculatin	g tota	l monthl	y cos	st and th	ien V	AT		(tota	l cost
										amo	unts
	Number	ofPrice	of	Rent	of	fTotal		Total		with	out
	copies	copies		copier		amount	for	amoun	t for	VAT)
		withou	t VAT	without	VAT	copies	and	copies	and	corre	ect
		(in Rar	ıd)	(in rand))	rent wi	thout	rent	with	1 All v	alues in
						VAT	(in	VAT	(in	colu	mn 5
						Rand)		Rand)		(tota	l cost
	0	C	0 438		60	438.6	50	500.	004	amo	unts
				,		,		,		with	VAI)
	500	52,	50	438,60		491,10 559,		854	COIL	BCI	
				,							
	1000	10	5	438,6	60	543,6	50	619,	704		
	1500	157	,50	438,6	60	596,2	10	679,	554		
	2000	21	0	438,6	60	648,6	50	739,	404		
				-				-		1 A	
	2500	262	,50	438,6	60	701,1	10	799,	254	1 A	
						v		v		1 All v	alues in
	TADIE 2.	Coloulati	na V/	T on it		and the	n da	tormine	total	colu	mn 2
	monthly a	oet	ng v <i>F</i>		51115	and the	ii ue	eter minite		corre	ect
	Price of on	e convintu		R0 1107	/					1 All v	alues in
	Cost to ren	t machine	nlue V	ΔT· R500	1 חח⊿	1 🗸				colu	mn 4
	Number Cost Cost for Total Dound									corre	ect
	of for Pont of monthly the total								1 R (c	olumn	
	Conies	conies	nhot	oconier	00	et.	mor	othly		5)	
	Cohies	+ VΔT	+ V	ΔT (in	inc	ludina	000	t incl			
		(in	Ranc		VA.	T (in	VAT			Penali	se only
		Rand)	- itant	•/	Rar	nd)	the			once	e in the
		itanaj			, i tui	,	nea	rest		ques	stion if
							who	ble		ansv	vers
							nun	nber		were	9
							(in F	Rand)		roun	ded,
	0	0	50	0 004	50	0.004		500		exce	ept in

	500	59,85	500,004	559,854	560		the last	
	1000	119,70	500,004	619,704	620		column	of
	1500	179,55	500,004	679,554	680		table 2 -	-
	2000	239,40	500,004	739,404	739		here you	u
	2500	299,25	500,004	799,254	799		penalise	e 1
		\checkmark	,	\checkmark	\checkmark	1	mark ag	jain
							if incorre	ectly
							rounded	1.
	Conclusio	n: The SG	B member is c	orrect 🗸			1 C	(8)
1.6	Monthly co	ost = 500 +	0,12 <i>x</i> ✓				1 R	(4)
17	See Crem	h						(1)
1.7	See Grap	n						
	1 Starting	at (0.500)						
	1 Last poir	at $(0,000)$	100)					
	1 Any two	other points	s correct					
	1 Label							(4)
								()
Question	n 2 [11]							
2.1	4/02/16 0	r 4 February	/ 2016√ √				2 C	
		-						(2)
2.2	The month	nly rent will	be R400 which	n includes 1 00	0 free copies	; √. So	1 E	
	you will pa	y R400 for	all copies up to	o 1 000 copies	. Thereafter y	ou will	1 E	
	pay R0,25	(or 25 c) pe	er copy √.					(2)
0.0	A - D400	/						
2.3	A = R400	√ 1 000 – 1 (1 A/RD	
	D . 2 000 –	= 1000 = 10	$\pm 1.000 \text{ copies}$	25 - D650 ./				
	$\mathbf{C} \cdot 900 = 4$	100 = R500	+ 1 000 X RU,	25 - R050 V				
	R500 ÷	R0.25 = 2	000 copies	·)·				
	2 000	copies $+ 1$ (000 copies = 3	000 copies				
	C = 3 0	00 √						(3)
2.4	See graph	ו					I	
	1.01							
	1 Starting	point (0;400)) - 1 000					
	1 Snape o	r graph up t		5)				
	(5 000:1 A	ast point na 00)	intery					
	1 Shane o	oo) f aranh fron	n (1 000·400) (o last noint				(4)
	Question	3[19]	1(1000,400) ((+)
3.1	D : R700 √	<u>~['~]</u>					1 RD	
0.1	E: Two po	ints: (3000:	700) and (500	0:1500) the co	opies rise wit	h 2000	1 A	
	and Cost y	with R800 t	hus: $\frac{800}{100} = 40$	c or R0 40 √			1 RD	
		, tooo, t	2000	0 01 1 (0, 40				(3)
3.2	F. 3 UUU V	rat = 0.5 c	/				10	
3.2		$s_1 = 0.5 x$	r of conios ma	do ./			1 Uariable	•
	where x is	the numbe	i oi copies ma	ue •			evolained	-
								(2)
33	The mont	hlv cost a	nd the numb	er of conies	are the sar	ne for	1 F	(4)
	quotations	3 and 4	\checkmark				1 Term	
	Break-eve	n-point √						(2)

3.4	Go to 5 000 copies. Move up, the first graph that you touch will be the	1 E
	cheapest option \checkmark . In this case, it is quotation 1. The learner is	1 RD/CA from
	correct.√ (Any other reasonable answer)	1.6 (2)
3.5		
3.5.1	Annually means every year OR on a yearly basis OR per year $$.	1 E (1)
3.5.2	Contract 2: For 5 000 copies the monthly cost will be:	1 A Contract
		2 annual cost
	400 + (5 000 – 1 000) x 0,25 = R1 400	1 A Contract
		1: year 1
	Annual cost: 1 400 x 12 = R16 800 √	1 CA total
		year 2
	Contract 1:	1 CA total
	Year 1: 500 + (0,12 x 5 000) = R1 100	year 3
	Annual cost: R 1 100 x 12 = R13 200 \checkmark (take note: learners can also	1 D (c/a)
	read the value from the graph)	
	Year 2 : Rent: 500 x 1,3 = R650	
	650 + (0,12 x 5 000) = R1 250	
	Annual cost: R1 250 x 12 = R15 000 ✓	(5)
	Year 3 : Rent: 650 x 1,3 = R845	
	845 + (0,12 x 5 000) = R1 445	
	Annual cost: R1 445 x 12 = R17 340 √	
	After 2 years you will pay more for contract 1 than contract 2 \checkmark	
3.5.3	Over 3 years contract 2 will cost 3 x R16 800 = R50 400 ✓	1 Total
	Contract 1 will cost over 3 years:	Contract 2
	R13 200 + R15 000 + R17 350 ✓ = R45 550 ✓	1 CA Adding
	No, contract 1 will still be cheaper over 3 years than contract 2 \checkmark .	1 CA
		1 D (c/a)
		(4)

6.3.5 (a) Investigation 2

Marks: 50

Calculating the number and cost of paving blocks

For this investigation you will:

- Calculate the area to be paved
- Find out the dimensions of two different possible sizes of square paving blocks for this job
- Find out about the cost of the two different sizes of paving blocks
- Estimate the number of paving blocks needed, using the two different sizes of paving blocks
- Calculate the costs of the paving blocks needed for each of the sizes
- Compare the cost of the job, using the two different paving block sizes.

SECTION 1: Introductory information for the investigation:

Paved area in gardens is useful for play areas and for outdoor seating. For the garden in the diagram below, the paved area will be paved with square cement paving blocks laid so that there is a narrow gap all around each block. This is so that grass or other spreading plants can be grown between the paving blocks. The width of the gap will be 30% of the width of the paving block. Paving blocks are made in different sizes, which have different prices, so using one size rather than another could be more economical.

- 1.1 Visit your nearest building supply store or garden centre to find out what sizes of square plain cement paving blocks are available and what they cost.
 - (4)
- 1.2 Choose two sizes of paving block that you will work with for this assignment. They should both have side lengths of more than 30 cm. (If it is absolutely impossible for you to find this information, then use the following sizes: 45 cm square (R28.50) and 60 cm square (R41.00).

SECTION 2: Calculations:

- 2.1 Use the diagram above to calculate the total area to be paved. (8)
- Use this area value to estimate the number of paving blocks of each size that you will need for the job (remembering that there will be a gap that is 30% of the width of the paving block all around each block).
- 2.3.1 For each size of block, work out how many blocks you will need if you lay them in the way shown in the diagram below. At the edges, you may need to cut blocks. If the width of the block needed at an edge is less than 10 cm, then you leave it out. Any block that is cut will count as a whole block, because we can

assume that cut-off pieces will be wasted.

2.3.2 You must draw scale diagrams of the paving to help you work out how many blocks you will need altogether (two drawings altogether). Decide on an appropriate scale.

Indicate your conversions of your measurements. Draw neat sketches of your design. (14)

- 2.4 For each of the block sizes, calculate the total cost of the paving blocks needed. (4)
 2.5 Which size of paving block is more comparised for this ish2 (2)
- 2.5 Which size of paving block is more economical for this job? (2)

Total: 50

6.3.5 (b) Investigation 2 Memo

Sect A	Solution	Explanation	TL
1.1	Learners use examples given:		1
	45 cm = 0,45m ✓ C	1C conversion	
	Price = R28,50 ✓ A	1A	
	60 cm = 0,60 m ✓ C	1C conversion	
	Price = R41,00 ✓ A	1A	
		(4)	
Sect B			
2.1	Area of rectangle = length × breadth \checkmark F = 7,3 × 2,4 \checkmark SF = 17,52 m ² \checkmark A \checkmark Unit Area of triangle = ½ × base × height \checkmark F = (0,5)(4,9)(4,9) \checkmark SF = 12 m ² \checkmark CA Total Area	 1A for using correct unit for area 1F correct formula 1S substitute into correct 1A answer 1F correct formula 1SF substitute into correct 1CA answer 1CA answer (8) 	2
	= 17,52 m ² + 12 m ² = 29,52 m ² \checkmark		
2.2	Small block: 30% × 0,45 m ✓M = 0,14 m ✓A Area = 0,73 × 0,73 ✓ M = 0,53 m ² ✓ CA Big block: 30% × 0,6 m ✓ M = 0,18 m ✓ A Area = 0,96 × 0,96 ✓ M = 0,92 m ² ✓ CA	1M concept of % 1A answer 1M 1A answer 1M concept of % 1A answer 1M 1A answer (8)	1
2.3.1	Small block: Area of rectangle = $17,52 \div 0,53$ $\checkmark M$ $\approx 33 \text{ paving}$ blocks $\checkmark CA$ Area of triangle = $12 \div 0,53 \checkmark M$ $\approx 23 \text{ paving}$ blocks $\checkmark CA$ Total small paving blocks = $56 \checkmark$ CA <u>Big block:</u> Area of rectangle = $17,52 \div 0,92 \checkmark$ M	1M 1A rounded answer 1M 1A rounded answer 1CA total 1M 1A rounded answer 1M 1A rounded answer 1CA total (10)	3

	 ≈ 19 paving blocks ✓ CA Area of triangle = 12 ÷ 0,92 ✓ M ≈ 13 paving 		
	blocks \checkmark CA Total small paving blocks = 32 \checkmark CA		
2.3.2	Drawings: Refer to the Rubric	2 × 7 (14)	4
2.4	$\frac{\text{Small block:}}{56 \times \text{R28,50}} \checkmark \text{M}$ = R1 596 \checkmark CA <u>Big block:</u> 32 × R41,00 \checkmark M = R1 312 \checkmark CA	1M 1CA 1M 1CA (4)	2
2.5	The 60 cm block (big block) is cheaper to use for paving. ✓✓ O	2Conclusion (2)	4

RUBRIC – QUESTION 2.3.2 Small cement block

	4	3	2	1	
Scale drawings	Shows a thorough understanding and knowledge of the use of a scale; Measurements are converted correctly; Understands that outside borderlines are more important than detail.	Shows a thorough understanding and knowledge of the use of a scale; Measurements are converted correctly; Draws the outside border lines but tries to include unnecessary detail.	Shows a thorough understanding and knowledge of the use of a scale; Needs help with conversion of measurements; Spends too much time on including unnecessary detail.	Shows very little understanding and knowledge on the use of a scale; Does not know how to convert measurements; Copies sketches without changing the scale	
Design		Thorough analysis of the problem with well thought through solutions is evident.	Analysis of the problem is clear and explanations for the solutions can be given	Analyses the problem to a certain extent, but struggles to get a solution which works.	

Big cement block

	4	3	2	1	
Scale drawings	Shows a	Shows a	Shows a	Shows very little	
	thorough	thorough	thorough	understanding	
	understanding	understanding	understanding	and knowledge	
	and knowledge of	and knowledge of	and knowledge of	on the use of a	
	the use of a	the use of a	the use of a	scale;	
	scale;	scale;	scale;		

	Measurements are converted correctly; Understands that outside borderlines are more important than detail.		Needs help with conversion of measurements; Spends too much time on including unnecessary detail.	Does not know how to convert measurements; Copies sketches without changing the scale	
Design		Thorough analysis of the problem with well thought through solutions is evident.	Analysis of the problem is clear and explanations for the solutions can be given	Analyses the problem to a certain extent, but struggles to get a solution which works.	

6.3.6 (a) Investigation 3

(4)

George, a business man, lives in Gauteng. In one month he must travel to Cape Town to visit his three business sites. The first site is in Cape Town which is 9 kilometres from the airport, the second site is in Paarl and is 60 kilometres from the airport and the third site is in Bellville and is 30 kilometres from the airport. George visits one site per day, travels back to Gauteng and comes back the following day to visit another site.

In this **Investigation you will be required to advise George as to which of the three rental <u>companies offer the cheapest rate</u>** for each of the three days he will require a car to visit the sites.

George collected the following information from advertisements of three car hiring companies at Cape Town International Airport.

		24 Hour Radio Metered Taxi Service
Eezy Bucs Cars	S'bu Taxi service	Joe radio Taxi service
Only R10 per kilometre	Convenient travelling for only	The cheapest rate per
	R100 <i>basic</i> fee plus R5 per	kilometre only R200 basic fee
	kilometre	plus R2 per kilometre
Power steering, radio and	Power steering and radio. Car	Leather seats, power steering
air corn. Car fully serviced	fully serviced	air con, ABS brakes and CD

Answer the following questions.

- 1. What does the term *basic* mean as used in the advertisement? (2)
- 2. Which car rental company offers the cheapest rate per kilometre? (2)
- 3. The formula used to calculate the cost of hiring a car from Eezy Bucs Cars is

Cost (in rands) = R10 x n, (where n is the number of kilometres travelled)

- (a) Write down formulae for calculating the cost of hiring from the other two companies.
- (b) How much will George pay for the return trip to Paarl if he hires from Eezy Bucs Cars?(2)

(c) The car that George used to Paarl has the fuel consumption rate of 5,2 litres per 100 km

The cost of petrol on the day was R11,90 per litre

i) Calculate the cost of petrol for the trip to Paarl (4)

- ii) Determine the profit Eezy Bucs Cars made from that trip (excluding wear and tear cost). Profit = Income – Cost (2)
- (d) The table below compares the hiring cost for the three companies; complete the table in your answer book.(6)

Distance (in Km)	0	10	20	30	40	50	60	70	80
Eezy Bucs Cars (cost in rands)	0	100	200	300	400	500	600	700	800
S'bu Taxi service (cost in rands)	100				300				
Joe Radio Taxi service (cost in rands)	200					300			

- 4. The graph below shows the cost of hiring from Eezy Bucs Cars for different kilometres.
 - (a) On the same set of axes draw graphs that represent hiring costs from S'bu Taxi service and Joe Radio Taxi service. Clearly label your graphs.
 (9)
 - (b) On a certain day George hired a car from S'bu Taxi services and paid an amount of R450. Use your graph to estimate the distance that George travelled on that day. (2)
 - (c) If on the first day George decides to visit his uncle who lives 20 km from the airport before going for the site visit in Cape Town in the same direction, which of the three companies will be the cheapest option, and why?
- Name three other considerations that George must take into account before choosing a car hire? (3)
- Explain in your own words what is happening at 20 km and at 35 km in terms of the cost? And which option is expensive on the respective kilometres. (4)
- Give a reason why the graphs for S'bu Taxi services and Joe Radio service do not start at
- (0;0), the origin.
 8. Use your completed table or graph to advise George on the cheapest car hiring option for each of his site visits.
 (3)

6.3.6 (b) Investigation 3 Memo

Questions	Solution	Mark s	Explanation	TL
1.	Basic is the amount irrespective of the number	2	-	TL 1
	of kilometres travelled $\checkmark \checkmark$			
2. 3. (a)	Joe radio Taxi service	2 4		TL 1 TL 2
	kms√√			
	Joe: Cost(rands) = R200 + R2 x number of			
	kms√√			
(b)	Eezy Bucs cost (rands) = R10 x number of kms = R10 x 60 x 2 x	3	1 for return dist 1 for substitution	TL 3
	= R1200 ✓		1 for answer	
(c)	(i) Amount of petrol = $\frac{5,2 l}{100 km}$ x 120km		l for multiplying by 120	TL 3
	Amount of petrol = 620 litres 🗸	4	1 for amnt petrol	
	Cost of petrol = 620 litres x R11.90 /litre		1 for cost	
	Cost of petrol = R74,25 ✓ (ii) Profit = Income – Cost		1 for substitution 1 for answer	TL 2
	= R1200 − R 74, 00 🖌	2		
	= R 1125,74 🖌	-		

(d)

Distance (in Km)	0	10	20	30	40	50	60	70	80	3 mark for each correct row all numbers must be	
Eezy Bucs Cars (cost in rands)	0	100	200	300	400	500	600	700	800		
S'bu Taxi service (cost in rands)	100	150	200	250	300	350	400	450	500	correct. $\checkmark \checkmark \checkmark$	
Joe Radio Taxi service (cost in rands)	200	220	240	260	280	300	320	340	360	√√√ TL 2	

4 (b)	See the graph	8		TL 2
(b)	70 kms $\sqrt{}$	2	RG	TL 2
(C)	Joe Taxi Radio service will be the cheapest $\checkmark\checkmark$	2	RG	TL 2
5.	Enough money	3	Any two valid	TL 4
	Comfort ability of the car		considerations	
	Safety of the car			
	• Beauty of the car $\checkmark \checkmark \checkmark \checkmark$			
	If the cars are available			
	Distance to travel			
	Brand of the car (name of the manufacturer)			
6	 At 20 kms Fezy Bucs cars and S'bu taxi 	4		TI 4
0	service are charging the same amount \checkmark ,	-		1 - 7
	and Joe Radio taxis is the expensive option 🖌			
	At 35 kms S'bu Taxi Service and Joe			
	Radio taxis are charging the same			
	option \checkmark			
7	 Because if you choose one of them then 	2		TL 4
	you have to pay the basic amount on top			
	of the knometres rate v v			
8	• For the Cape Town trip the cheapest		No other answer	TL 4
	option is Eezy Bucs Cars ✓		is acceptable	
	• For the Paarl trip Joe Radio Taxis is the	3		
	cheapest 🗸			
	For the Bellville trip S'bu taxi service will			
	be the cheapest \checkmark			

COST IN RANDS

222 Struben Street, Pretoria, 0001 Private Bag X895, Pretoria, 0001, South Africa Tel: 012 357 3000 • Fax: 012 323 0601 Private Bag X9035, Cape Town, 8000, South Africa Tel: 021 486 7000 • Fax: 021 461 8110 Call Centre: 0800 202 933

ISBN 978-1-4315-3126-4

Department of Basic Education

www.education.gov.za

www.twitter.com/dbe_sa

www.facebook.com/BasicEd