

Changing lives of ordinary people through human and social sciences

LIFE ORIENTATION

Mathem

Perspectives on improving education in SA; Education Summit of the Department of Basic Education

16 & 17 April 2013, Pretoria

(Initial version prepared by CH Prinsloo
& S Rogers for North-West Province
Education Indaba; presented on behalf
of TIMSS National Research
Coordinator and team by CH Prinsloo)

Highlights from TIMSS 2011: South Africa

Towards Equity and Excellence

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY (TIMSS 2011)

- TIMSS is an opportunity to assess and <u>benchmark</u> South African mathematics and science performance in an <u>international</u> study. TIMSS has been conducted every four years since 1995. In TIMSS 2011, 45 countries participated at the grade 8/9 level.
- It is important to measure learner achievement through national, regional and international measures. These studies provide information about the <u>well being</u> of our educational <u>system</u>; so that we could better <u>manage and improve</u> our systems.
- In August 2011, the HSRC administered the TIMSS 2011 mathematics and science instruments in 285 schools to <u>11 969</u> Grade 9 <u>learners</u>.
- We conducted previous TIMSS in 1995, 1999 and 2002 and have comparable data to monitor system-level <u>trends</u> in a global context.

Today's Presentation

- Very brief key findings from TIMSS 2011 data
- Placing provincial achievement in national context
- Selected interesting observations
- Implications for Education in South Africa
- (Presentation of Feb '13 to National DBE HEDCOM meeting refers, and is not cited in detail. It covered:
- i. methodology, trends in achievement since 1995, comparison between TIMSS 2002 & 2011, curriculum coverage, school & home resources, teacher & classroom resources, language & achievement, attitudes)

Trends: TIMSS 1995 to 2011

- The TIMSS achievement scale has a centre point of 500 and a standard deviation of 100 which were metrics established in 1995 (first cycle of TIMSS).
- It is scaled to remain constant so that comparisons can be made between countries and across years.
- Data from the previous cycle and data from successive cycles are scaled using a process called concurrent calibration.
- Hence placing all data on the same scale for comparability.

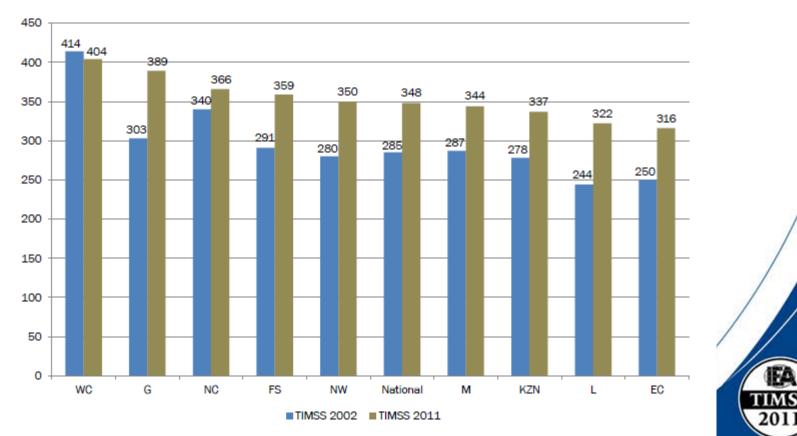
Key messages from TIMSS 2011


- South African mathematics and science national average scores, although still low, has improved from 2002.
- The difference between the highest and lowest scores in 2002 to 2011 has decreased.
- The greatest improvements in scores is observed at the lowest end, from the lowest performing schools and provinces, and in schools formerly designated for Africans.
- The top end has not shown any major improvements and the former House of Assembly/ Model C and Independent schools perform at similar levels, but lower than the middle (Centrepoint) score.

Exhibit 1.2: Distribution of Mathematics Achievement

- For mathematics, Asian countries Korea, Singapore, Chinese Taipei, Hong Kong and Japan - are top performers.
- South Africa, Botswana and Honduras conducted the study at Grade 9 level.
- South African performance is still at the low end, but has improved since 2002. In 2002 South Africa scored 285 points at the grade 9 level. In 2011 the score was 352.
- The top South African performers approached the average performance of the top performing countries.

Provincial comparison (Maths; 2002 to 2011)


Country as a whole: 285 to 348

Lowest Provinces: EC 250 to 316 LP 244 to 322 Highest Provinces: WC 414 to 404 GP 303 to 389

Change in achievement by province between 2002 to 2011

Performance at scores above 400: access to S&T careers and indicator of quality

	Advanced Benchmark (%) >625	High Benchmark (%) >550	Intermediate Benchmark (%) 475	Low Benchmark (%) >400	Less than 400 points
Gr 8 TIMSS 1995	0.3	2	6.6	13.6	87%
Gr 8 TIMSS 1999	0.2	1.5	5.7	13.2	86.8%
Gr 9 TIMSS 2002	0.6	1.5	2.8	10.5	89.5%
Gr 9 TIMSS 2011	1	3	9	24	76%

Performance at scores above 400: access to S&T careers and indicator of quality

	Advanced Benchmark (%) >625	High Benchmark (%) >550	Intermediate Benchmark (%) 475	Low Benchmark (%) >400	Less than 400 points
Gr 8 TIMSS 1995	0.3	2	6.6	13.6	87%
Gr 8 TIMSS 1999	0.2	1.5	5.7	13.2	86.8%
Gr 9 TIMSS 2002	0.6	1.5	2.8	10.5	89.5%
Gr 9 TIMSS 2011	1	3	9	24	76%
BOTSWANA	0	2	15	50	50%

6. Future.....?

- Participation in TIMSS 2015.
- Work towards improvement of both lower and top end of performance.
- With the effort and commitment of schools, teachers and learners and support from the educational departments we should set the target for an improvement by 30 points to reach a score of 382 in 2015 & 40% of learners score above 400 points.

Projected scores

YEAR	Grade 9 Mathematics scores
2023	442
2019	412
2015	382
2011	352
2002	285
1999	296 (extrapolated)
1995	294 (extrapolated)

SOME IMPLICATIONS ABOUT CONTEXT

School and home resources

- Higher levels of resources are linked to better educational outcomes
- Learning is more difficult in learning environments where discipline, absenteeism, safety/fear of injury or loss of personal property is a problem
- In EC, MP, NC, NW all learners attended schools with discipline and safety problems. Three in every four learners (75%) in SA experience bullying weekly/monthly the international figure is 41% of learners

Curriculum

- Curriculum stability for the ten-year period
- Schools / teachers should know and adhere to national curriculum – curriculum challenges continue
- Curriculum coverage and learner achievement do not necessarily overlap

Changes in Curriculum landscape

Curriculum	Years	Reasons	Duration	
Interim syllabus	1995 - 1997	Changing from Apartheid system to the democratic system	2 years	
Curriculum 2005	1998 - 2001 -	Skewed curriculum, lack of human resources for implementation, curriculum and assessment policy not aligned policy overload, no classroom transferability, inadequate teacher training, and inequitable quality of materials.		
Revised National Curriculum Statement	2002 - 2011	Lack of a plan for implementation, an overabundance of policies, guidelines and interpretations of policies and guidelines at all levels of the education system, and unclear role of subject advisor.		
Curriculum Assessment Policy Statement	2012			

Curriculum coverage in percentages

	IEA TCMA intended	SA Intended	SA reported implemented
Mathematics	100	94	72
Science	100	90	62

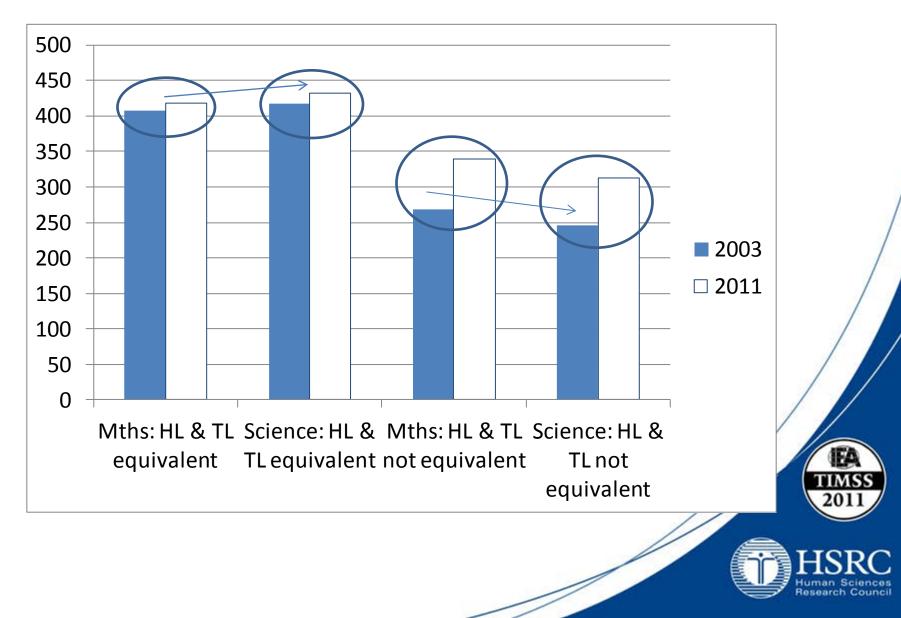
SOME IMPLICATIONS ABOUT CONTEXT

Teachers

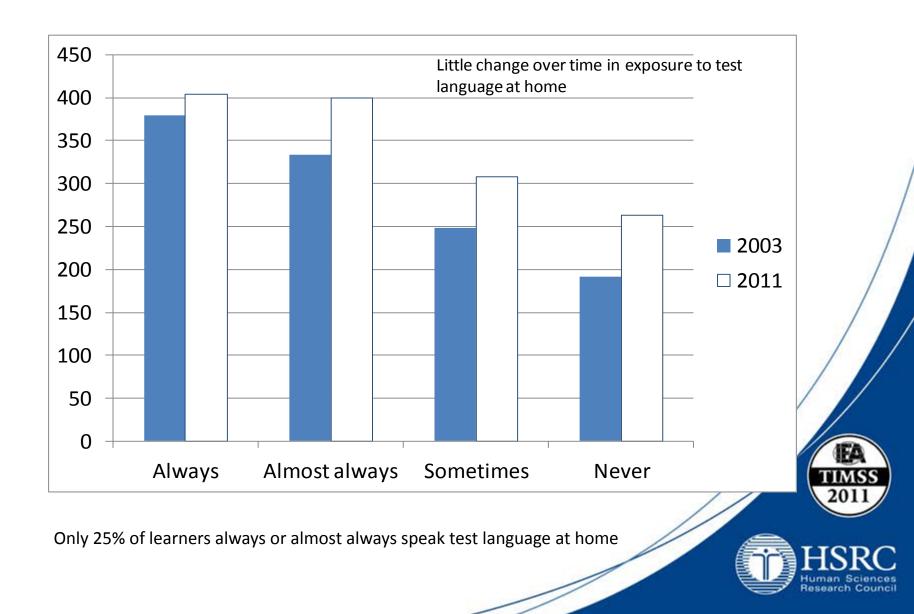
- Findings indicative rather than representative of SA teachers; learners remain the unit of analysis
- South African TIMSS 2011 teachers are: older, experienced, well qualified, well prepared, confident, satisfied
- Audit of teacher qualifications: at national level, or for representative sample
- Emphasise combination of subject & subj. pedagogy/didactics training/

Importance of language for achievement

- Learners move from "learning to read" to "reading to learn"
- Text-rich, language-dependent background and activity enhance conceptual, cognitive and academic proficiency among learners
- See next few slides


Context and learner achievement

Factor affecting lo-hi score differences in the next column	For Maths			
I. Demographic and structural conditions				
Home and instructional/test language equivalence	80			
Perceived learner difficulty understanding spoken school lang.	65			
Female & male parent/caregiver qualification level	85 & 90			
II. Access to language opportunities and suppo	rt			
Schools sending extra learning materials home	37			
Exposure to writing through homework (frequency ; volume) (3+ times per week; 16-30 to 31-60 minutes in volume)	35 (teachers) 40 (learners)			
Frequency of speaking the test language at home	84			
Number of books at home	46			
III. Resource constraints and limitations				
Effect of textbook/learning material shortages on instruction	107			
Resources: - software use in class - computers, Internet, TV, dictionaries* at home	40 46 (39*)			


... Language vulnerability of Science

Factor affecting lo-hi score differences in the next column/s	Maths	<u>Science</u>		
I. Demographic and structural conditions				
Home and instructional/test language equivalence	80	<u>120</u>		
Perceived learner difficulty understanding spoken school lang.	65	65		
Female & male parent/caregiver qualification level	85 & 90	<u>118 & 122</u>		
II. Access to language opportunities and support				
Schools sending extra learning materials home	37	45		
Exposure to writing through homework (frequency ; volume) (3+ times per week; 16-30 to 31-60 minutes in volume)	35 (teachers) 40 (learners)	Erratic		
Frequency of speaking the test language at home	84	<u>141</u>		
Number of books at home	46	61		
III. Resource constraints and limitations				
Effect of textbook/learning material shortages on instruction	107	<u>135</u>		
Resources: - software use in class - computers, Internet, TV#, dictionaries* at home	40 46 (39*)	57 66 (<u>76#</u>)		

Home / test language equivalence

Science and speaking Test Lang. at home

Synthesis and implications

- Many language-linked learning conditions have improved
- The school system has to ensure that as many as possible learners' home and test languages are the same; else learners' proficiency in the language of learning and teaching (testing) should be increased
- The latter will benefit from greater exposure of learners to reading and writing of extended text, and to speaking the language of instruction at home, especially with a view to increasingly language-dependent contents/subjects
- Strong efforts are required to overcome constraints associated with language-based resources

Concluding remarks

- At broadest level school functionality is key
- Teachers improve relevance and completeness of teacher qualifications in both the subject and its didactics
- Curriculum enhance coverage (as delivered), especially pertaining to core, foundational concepts
- Resources expand appropriateness and saturation
- Language improve overlap (and mastery) of home and instructional languages, especially earlier in the system /
- Increase accountability forces by communicating the individual learner and school achievement results widely to parents and the community

