MARKS: 200

These marking guidelines consist of 10 pages.
INSTRUCTIONS TO THE MARKERS

1. All questions with multiple answers imply that any relevant, acceptable answer should be considered.

2. Calculations

 2.1 All calculations must show the formulae.

 2.2 Substitution of values must be done correctly.

 2.3 All answers MUST contain the correct unit to be considered.

 2.4 Alternative methods must be considered, provided that the correct answer is obtained.

 2.5 Where an incorrect answer could be carried over to the next step, the first answer will be deemed incorrect. However, should the incorrect answer be carried over correctly, the marker has to re-calculate the values, using the incorrect answer from the first calculation. If correctly used, the candidate should receive the full marks for subsequent calculations.

 2.6 Markers should consider that candidates' answers may deviate slightly from the marking guidelines, depending on how and where in the calculation rounding off was used.

3. These marking guidelines are only a guide with model answers. Alternative interpretations must be considered and marked on merit. However, this principle should be applied consistently throughout the marking session at ALL marking centres.
QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY (GENERIC)

1.1 Workplace is any premises or place where a person performs work in the course of his employment.

1.2 To cooperate with employer or persons to ensure that any duty given by the employer to the employee shall be performed or compiled in accordance with requirements and procedures.

1.3 Dangerous fumes can accumulate in the workshop that can be inhaled by people making it an unsafe condition.

1.4 To review the effectiveness of health and safety measures.

1.5 Quantitative risk analysis is an attempt to numerically determine the probabilities of various adverse events and the likely extent of the losses if a particular event takes place.

QUESTION 2: SWITCHING AND CONTROL CIRCUITS

2.1

2.2 The bi-stable multivibrator is defined as a circuit that is able to give and hold two stable output values, either high or low whenever a trigger pulse is received.

2.3

Copyright reserved
2.4 2.4.1 Contact debouncer ✓

2.4.2 R_1 is necessary to prevent pins 6 and 7 ✓ from being directly connected to the positive voltage supply ✓ when V_{R1} is set to 0 Ω. ✓ (1)

2.4.3 An increase of C_1 will increase the RC time constant ✓ of the circuit keeping the output at a 'high' or 'on' state for longer. ✓ (2)

2.4.4 When S1 is pressed, the input voltage on pin 2 will pulled down to 0 V ✓. This triggers the 555 IC ✓ setting the output voltage at pin 3 and pin 7 to high. ✓ Once the capacitor voltage V_{C1} reaches 2/3 of the supply voltage ✓, it will immediately trip the internal timing circuit to reset the output pin 3 to low or 0 V returning to its stable state. ✓ (3)

2.5 Radio receiver filters ✓
Contact debouncer ✓
Analogue to digital converter ✓
Signal recovering ✓ (2)

2.6 The Schmitt trigger is able to trigger at TWO different voltages. ✓ The moment the input rises above the upper trigger level its output will go to negative saturation ✓ and the moment the input falls below the lower trigger level its output will go to positive saturation. ✓ (3)

2.7

2.8 2.8.1 Resistor R_2 determines the reference voltage of the comparator ✓ (1)

2.8.2 Resistors R_1 and R_2 creates a voltage divider ✓ that feeds a reference voltage into the non-inverting input ✓ while its inverting input is usually fed by a transducer. ✓ These two voltages are compared and as soon as the voltage on the inverting input goes higher than the non-inverting input ✓ the amplifiers output will go into negative saturation ✓. The moment the non-inverting voltage goes higher than the inverting voltage, the amplifiers output will go into positive saturation. ✓ (6)

2.8.3 To adjust the reference voltage the resistor R_2 can be replaced by a variable resistor ✓ (1)
2.9 2.9.1 Inverting √ summing amplifier √ (2)

2.9.2 Negative feedback √ (1)

2.9.3 The gain of the amplifier is determined by the ratio √ of the feedback resistor √ to the input resistance √ of each branch. (3)

2.9.4 \[V_{\text{out}} = -(V_1 + V_2 + V_3) \] √
\[V_{\text{out}} = -(850 \text{ mV} + 200 \text{ mV} + 950 \text{ mV}) \] √
\[V_{\text{out}} = -2 \text{ V} \] √ (3)

2.10 The function of a differentiator is to change a square wave √ into a triangular wave. √ (2)

2.11 2.11.1

![Diagram of waveforms]

2.11.2 A long time constant will cause the capacitor to discharge slower √ causing the output signal to become more like a distorted square wave. √ (2)

2.12 2.12.1 Inverting √ integrator (2)

2.12.2

![Diagram of integrator waveform]

2.12.3 The higher the frequency for a particular time constant, the better the shape, √ but the smaller its amplitude. √ (2)
QUESTION 3: SEMICONDUCTOR DEVICES

3.1 3.1.1 A - Non-inverting input ✓
 B - Inverting input ✓ (2)

3.1.2 High gain ✓
 High input resistance ✓
 Low output resistance ✓
 Wide bandwidth (3)

3.1.3 Open loop gain ✓
 Closed loop gain (1)

3.1.4 It is important for the op-amp to have a dual voltage supply to be able to amplify all signals above 0 V ✓ and below 0 V ✓ (positive and negative signals) (2)

3.2 3.2.1 \[A_V = \frac{R_F}{R_{IN}} \] ✓
 \[= \frac{2000}{220} \]
 \[= -9.09 \] ✓
 \[(3) \]

3.2.2 \[V_{OUT} = V_{IN} \times \left(\frac{R_F}{R_{IN}} \right) \] ✓
 \[= 0.55 \times \left(\frac{2000}{220} \right) \]
 \[= -5 \text{ V} \] ✓
 \[(3) \]

3.2.3 If the value of the feedback resistor is increased to 20 kΩ the gain of the amplifier will increase to -90.9 ✓ and the output voltage will increase to -50 V, therefore the output will be saturated. ✓ (2)

3.3 Timing functions (turning a light on and off for a prescribed time) ✓
 Creating a warning light ✓
 Pulse, oscillation and signal generation
 Digital logic probes
 Controlling the positioning of a servo device (2)

3.4 3.4.1 Pin 6 (threshold) sets the voltage ✓ at which the 555 IC will trigger. ✓ (2)
QUESTION 4: DIGITAL AND SEQUENTIAL DEVICES

4.1 Liquid Crystal Display (LCD).

4.2 A sinking output has the transistor collector connected to the LED’s cathode.
A sourcing output has the transistor emitter connected to the LED’s anode.

4.3 The function of a decoder is to convert binary code to decimal code.

4.4

4.4.1 \[C_O = \overline{A}B\overline{C} + AB\overline{C} + AB + AC \] (1)

4.4.2 \[C_O = \overline{A}B\overline{C} + AB\overline{C} + AB(\overline{C} + \overline{C}) \] (1)
\[C_O = \overline{A}B\overline{C} + AB + AC \] (1)
\[C_O = \overline{A}B\overline{C} + A(\overline{B}C + B) \] (1)
\[C_O = AC + BC + AB \] (1)

4.5

4.6 Combinational logic circuits use AND, OR and NOT gates as their basic elements.
Sequential logic circuits involve timing and memory devices and rely on the FLIP-FLOP as their basic building elements.
4.7

<table>
<thead>
<tr>
<th>MODE OF OPERATION</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILLEGAL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SET</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RESET</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HOLD</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>Q̅</td>
</tr>
</tbody>
</table>

4.8
The TWO types of counters that are commonly used are:
Synchronous counters ✓
Asynchronous counters ✓

4.9

4.9.1

4.9.2

<table>
<thead>
<tr>
<th>CLOCK PULSES</th>
<th>BINARY COUNT SEQUENCE</th>
<th>DECIMAL COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 1 1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1 1 0 1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1 1 0 0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1 0 1 1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0 0 1 1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1 1 1 1</td>
<td>7</td>
</tr>
</tbody>
</table>

1 mark for CLOCK PULSES column
1 mark for every 2nd BINARY COUNT SEQUENCE
1 mark for DECIMAL COUNT

4.10
Serial – in : Serial – out shift register (SISO) ✓
Serial – in : Parallel – out shift register (SIPO) ✓
Parallel – in : Serial – out shift Register (PISO) ✓
Parallel – in : Parallel – out shift Register (PIPO) ✓

4.11

Copyright reserved
QUESTION 5: MICROCONTROLLERS

5.1 Alarm monitoring and warning devices ✓
 Fire detection and safety devices ✓
 Temperature sensing and control
 Light sensing and control (2)

5.2 The main disadvantage of a microcontroller is that it has a very low output, of a few mA ✓ and this therefore requires interfacing circuitry ✓ to drive higher current loads. (2)

5.3 A microprocessor is an Integrated Circuit (IC) with only a Central Processing Unit (CPU). ✓
 A microcontroller is a complete, small scale computer ✓ with all the necessary devices required to function, embedded together on a single IC chip. ✓ (3)

5.4 Discreet logic consists of a number ✓ of separate logic chips interconnected. ✓
 Integrated logic is a single logic chip ✓ containing all the chips in one package. ✓ (4)

5.5 5.5.1

 CPU ✓
 RAM ✓
 ROM ✓
 INPUT/OUTPUT ✓ (4)

5.5.2 The function of the CPU is to interpret and execute ✓ the stored instructions from the Read Only Memory (ROM) programme. ✓ (2)

5.6 The Programme Counter (PC) ✓
 The Memory Address Register (MAR) ✓
 The Memory Data Register (MDR) ✓
 The Current Instruction Register (CIR) (3)

5.7 5.7.1 Clock speed refers to the number of pulses per second generated by an oscillator that sets the tempo for the processor. ✓ (1)

5.7.2 The higher the clock speed the faster ✓ the CPU will perform each instruction. (1)
5.8 The function of an ADC is to convert an analogue input signal into digital input as microcontrollers operate only on digital signals.

5.9

5.9.1

Transmitter

Receiver

5.9.2

Receiver/Transmitter

Receiver/Transmitter

5.9.3

Receiver/Transmitter

Receiver/Transmitter

(simultaneous)

5.10

<table>
<thead>
<tr>
<th></th>
<th>RS-232</th>
<th>RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line configuration</td>
<td>Single-ended ✓</td>
<td>Differential ✓</td>
</tr>
<tr>
<td>Maximum cable length</td>
<td>15 metres ✓</td>
<td>1200 metres ✓</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>20 kbits/second ✓</td>
<td>10 Mbits/second ✓</td>
</tr>
<tr>
<td>Typical logic levels</td>
<td>±5 to ±15V ✓</td>
<td>1.5 to 6V ✓</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Simplex or full duplex</td>
<td>Simplex or half duplex</td>
</tr>
</tbody>
</table>

5.11.1 An algorithm is a detailed step-by-step sequence of instructions that are followed to complete a task.

5.11.2 A program is a sequence of instructions that tells a computer how to execute a function.

5.11.3 A flow diagram is a visual representation of the sequence of steps needed to perform and complete a process.
5.12

Start

Switch Pressed?
Yes
Output On

Wait 5

Output off

No

TOTAL: 200