

# basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA** 

NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

## **MECHANICAL TECHNOLOGY: AUTOMOTIVE**

----

**NOVEMBER 2018** 

# MARKING GUIDELINES

**MARKS: 200** 

1

These marking guidelines consist of 18 pages.

Please turn over

### **QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)**

| 1.6 | A✓ | (1) |
|-----|----|-----|
| 1.5 | D✓ | (1) |
| 1.4 | B✓ | (1) |
| 1.3 | A✓ | (1) |
| 1.2 | C✓ | (1) |
| 1.1 | A✓ | (1) |

### TOTAL QUESTION 1: [6]

### QUESTION 2: SAFETY (GENERIC)

### 2.1 **Angle grinder: (Before using)**

- The safety guard must be in place before starting. ✓
- Protective shields must be placed around the object being grinded to protect the people around. ✓
- Use the correct grinding disc for the job. ✓
- Make sure that there are no cracks in the disc before you start.  $\checkmark$
- Protective clothing and eye protection are essential.
- Check electrical outlets and cord/plugs for any damages. ✓
- Ensure that lockable switch is disengaged. ✓
- Ensure that the disc and the nut are well secured. ✓
- Ensure that the removable handle is secured. ✓
- Remove all flammable material from the area. ✓
- Secure the work piece. ✓

### (Any 2 x 1) (2)

(2)

(2)

(2)

(Any 2 x 1)

(Any 2 x 1)

### 2.2 Welding goggles:

- To protect your eyes against sparks ✓
- To protect your eyes against heat ✓
- To be able to see where to weld ✓
- To protect your eyes from UV rays / bright light ✓
- To protect your eyes from smoke ✓

#### 2.3 **PPE for Hydraulic press:**

- Overall ✓
- Safety shoes ✓
- Safety goggle ✓
- Leather gloves ✓
- Leather apron ✓
- Face shield ✓

#### 2.4 Workshop layouts:

- Process layout ✓
- Product layout ✓

### 2.5 Employer's responsibility regarding first-aid:

- Provision of first-aid equipment ✓
- First aid training ✓
- First-aid services by qualified personnel ✓
- Any first aid procedures ✓
- Display first aid safety signs ✓
- First aid personnel must be identified by means of arm bands or relevant personal signage ✓
  - (Any 2 x 1) (2)

## TOTAL QUESTION 2: [10]

3

#### **QUESTION 3: MATERIALS (GENERIC)**

#### 3.1 **Bending test:**

- Ductility ✓ ✓
- Malleability ✓ ✓
- Brittleness ✓ ✓
- Flexibility √ √

(Any 1 x 2) (2)

#### 3.2 **Heat-treatment:**

#### 3.2.1 Annealing:

- To relieve internal stresses ✓
- To soften the steel ✓
- To make the steel ductile ✓
- To refine the grain structure of the steel ✓
- To reduce the brittleness of the steel  $\checkmark$

### (Any 2 x 1) (2)

(2)

(2)

(3)

(3)

(Any 1 x 2)

(Any 1 x 2)

### 3.2.2 **Case hardening:**

- To produce a wear resistant surface ✓ and it must be tough enough internally ✓ at the core to withstand the applied loads.
- Hard case ✓ and tough core. ✓

### 3.3 **Tempering process:**

- To reduce ✓ the brittleness ✓ caused by the hardening process.
- Relieve ✓ strain ✓ caused during hardening process.
- Increase ✓ the toughness ✓ of the steel.

### 3.4 **Factors for heat-treatment processes:**

- Heating temperature / Carbon content ✓
- Soaking (Time period at temperature) / Size of the work piece ✓
- Cooling rate / Quenching rate ✓

#### 3.5 Hardening of steel:

- Steel is heated to 30 50°C above the higher critical temperature. (AC<sub>3</sub>) ✓
- It is then kept at that temperature to ensure (soaking) that the whole structure is Austenite. ✓
- The steel is then rapidly cooled by quenching it in clean water, brine or oil. ✓

### TOTAL QUESTION 3: [14]

Copyright reserved

### QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

| 4.1  | C✓      | (1) |
|------|---------|-----|
| 4.2  | B✓      | (1) |
| 4.3  | D✓      | (1) |
| 4.4  | D✓      | (1) |
| 4.5  | A✓      | (1) |
| 4.6  | C✓      | (1) |
| 4.7  | A✓      | (1) |
| 4.8  | D✓      | (1) |
| 4.9  | A / C ✓ | (1) |
| 4.10 | A✓      | (1) |
| 4.11 | D✓      | (1) |
| 4.12 | D✓      | (1) |
| 4.13 | A✓      | (1) |
| 4.14 | A✓      | (1) |
|      |         |     |

TOTAL QUESTION 4: [14]

### QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

| 5.1 | Eaui | pment: |
|-----|------|--------|
| 0.1 | Lyan |        |

|     | 5.1.1                                                                                      | Compression tester $\checkmark$                                                                                                                                                                                                                                                           | (1) |
|-----|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 5.1.2                                                                                      | <ul> <li>A – Flexible piping / hose / tubing ✓</li> <li>B – Adaptor screw / Fitting / Attachment / Connector ✓</li> <li>C – Gauge ✓</li> <li>D – Brassure release value √</li> </ul>                                                                                                      | (4) |
|     |                                                                                            | D – Pressure release valve ✓                                                                                                                                                                                                                                                              | (4) |
|     | 5.1.3                                                                                      | <b>Compression Tester:</b><br>It measures the pressure created, $\checkmark$ when the piston is at top dead centre on power stroke. $\checkmark$                                                                                                                                          | (2) |
| 5.2 |                                                                                            | <b>leakage:</b> whether the engine leaks gases $\checkmark$ from the cylinder during the ion stroke. $\checkmark$                                                                                                                                                                         | (2) |
| 5.3 |                                                                                            | yser:<br>ensure ✓ an accurate reading. ✓<br>prevent ✓ a lean reading. ✓                                                                                                                                                                                                                   |     |
|     |                                                                                            | (Any 1 x 2 )                                                                                                                                                                                                                                                                              | (2) |
| 5.4 | • Sca                                                                                      | of a computerized diagnostic scanner:<br>ans all systems ✓ on the vehicle.<br>orms what adjustments can be made after diagnosis ✓<br>(Any 1 x 1)                                                                                                                                          | (1) |
|     |                                                                                            |                                                                                                                                                                                                                                                                                           | (') |
| 5.5 | <ul><li>Mo</li><li>Zer</li><li>Tal</li></ul>                                               | auge camber procedure:<br>bunt the bubble gauge on to the straightened wheel ✓<br>ro the bubble gauge at the gauge zero scale ✓<br>ke the reading on the camber scale ✓                                                                                                                   |     |
|     | • Do                                                                                       | the same for the other wheel $\checkmark$                                                                                                                                                                                                                                                 | (4) |
| 5.6 | <ul> <li>The</li> <li>The</li> <li>The</li> <li>Clo</li> <li>De</li> <li>Matrix</li> </ul> | balance on wheels:<br>e plane of imbalance ✓<br>e extent of the unbalancing forces ✓<br>e sense of direction of these forces (clockwise or counter-<br>ckwise) ✓<br>termine the location of weight placement ✓<br>ignitude of the weights ✓<br>e run-out of the tyre and wheel assembly ✓ |     |
|     |                                                                                            | (Any 3 x 1 )                                                                                                                                                                                                                                                                              | (3) |
| 5.7 |                                                                                            | of turn tables:<br>it possible to turn $\checkmark$ the front wheels in or out $\checkmark$ to check $\checkmark$ the gles. $\checkmark$                                                                                                                                                  | (4) |

TOTAL QUESTION 5: [23]

### **QUESTION 6: ENGINES (SPECIFIC)**

| 6.1 | Static balancing of the crankshaft:<br>The crankshaft is in static when the mass in all directions ✓ from the centre<br>of rotation is equal while it is at rest. ✓                                                                                                                                                                                                                                                                                         | (2) |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 6.2 | Cylinder layouts:                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |
|     | 6.2.1 V - engine layout ✓                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1) |  |  |
|     | 6.2.2 In line (straight) engine layout ✓                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) |  |  |
| 6.3 | <ul> <li>Firing order in an engine:</li> <li>By removing the tappet cover and determining which are intake valves and which are exhaust valves ✓</li> <li>Rotating the engine in the direction in which it turns. ✓</li> <li>Watch the order in which one set of valves, inlet or exhaust operates ✓</li> <li>This will give the order in which the inlet stroke or exhaust stroke occurs ✓</li> <li>The power strokes occur in the same order ✓</li> </ul> |     |  |  |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |
|     | <ul> <li>Cylinder 1 must be at TDC on power stroke ✓</li> <li>Remove the distributor cap ✓</li> <li>Ensure to turn the engine in the correct direction of rotation ✓</li> <li>Determine the direction of rotation of the rotor ✓</li> <li>Trace the firing order by the HT leads ✓</li> </ul> (Any 1 x 5)                                                                                                                                                   | (5) |  |  |
| 6.4 | Firing order of engines:                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |  |
|     | <ul> <li>6.4.1 Four cylinder in-line engine:</li> <li>1,3,4,2; or ✓</li> <li>1,2,4,3 ✓ (Any 1 x 1)</li> </ul>                                                                                                                                                                                                                                                                                                                                               | (1) |  |  |
|     | 6.4.2 <b>V6-cylinder engine:</b><br>• $1,4,2,5,3,6 \checkmark$<br>• $1,2,3,4,5,6 \checkmark$<br>• $1,6,5,4,3,2 \checkmark$<br>• $1,4,5,6,3,2 \checkmark$                                                                                                                                                                                                                                                                                                    |     |  |  |

(Any 1 x 1) (1)

#### 6.5 Turbo charger:

#### 6.5.1 **Turbocharger:**

- A Compressor air inlet ✓
- B Turbine housina ✓
- C Turbine exhaust gas outlet ✓
- D Turbine wheel ✓
- E Turbine exhaust gas inlet ✓
- F Compressed air outlet ✓
- G Compressor wheel ✓

#### 6.5.2 **Turbocharger advantages:**

- More power / speed / boost is obtained from an engine with the same capacity  $\checkmark$
- There is no power loss as the turbocharger is driven by exhaust gasses 🗸
- Improved fuel consumption ✓
- The effect of height above sea level is eliminated ✓
- Generally, cheaper than superchargers ✓

Any (2 x 1) (2)

(7)

(2)

(2)

(2)

#### 6.6 Terminology:

#### 6.6.1 Boost:

Refers to the increase in manifold pressure  $\checkmark$  that is generated by the turbocharger in the intake that exceeds the normal atmospheric pressure. ✓

#### 6.6.2 Turbo lag:

- It is a delay  $\checkmark$  between pushing on the accelerator and feeling turbo kick in. ✓ or
- The time  $\checkmark$  it takes the turbo charger to reach operating speed. ✓

(Any 1 x 2) (2)

#### 6.7 Purpose of waste gate:

It diverts exhaust gases  $\checkmark$  away from the turbine wheel to regulate the turbine speed  $\checkmark$  and consequently boost pressure.

#### 6.8 Oil cooler:

To cool (prevent overheating) the oil  $\checkmark$  that lubricates the turbocharger bearings and shaft. ✓

#### **TOTAL QUESTION 6:** [28]

Copyright reserved

### **QUESTION 7: FORCES (SPECIFIC)**

#### 7.1 Torque:

- Torque is the twisting effort ✓ transmitted by a rotating shaft or wheel. ✓
- Turning force applied ✓ over a centre of a round object. ✓

(Any 1 x 2) (2)

#### 7.2 **Clearance volume:**

This is the volume of the space  $\checkmark$  above the crown of the piston at TDC.  $\checkmark$  (2)

### 7.3 Method to increase compression ratio:

- Remove shims between the cylinder block and cylinder head. ✓
- Fit thinner cylinder head gasket. ✓
- Machine metal from cylinder head. ✓
- Skim metal from cylinder block. ✓
- Fit a piston with a higher crown. ✓
- Fit a crankshaft with a longer stroke. ✓
- Increase the bore of the cylinders. / bigger pistons.  $\checkmark$

(Any 2 x 1) (2)

#### 7.4 **Calculation of compression ratio:**

7.4.1 Swept Volume = 
$$\frac{\exists D^2}{4} \times L$$
  $\checkmark$   
=  $\frac{\exists (7,5)^2}{4} \otimes 0$   $\checkmark$   
= 353,43 cm<sup>3</sup>  $\checkmark$  (3)

7.4.2 Compression Ratio = 
$$\frac{SV + CV}{CV}$$
  
 $CV = \frac{SV}{CR - 1}$   $\checkmark$   
 $= \frac{353,43}{8,5-1}$   $\checkmark$   
 $= \frac{353,43}{7,5}$   
 $= 47,12 \text{ cm}^3 \checkmark$  (3)

#### New compression ratio: 7.4.3

Swept volume = 
$$\frac{\text{HD}^2}{4} \times L$$
  $\checkmark$   
=  $\frac{\text{H7,8}^2}{4} \times 8$   $\checkmark$   
= 382,27 cm<sup>3</sup>  $\checkmark$ 

New compression Ratio = 
$$\frac{SV}{CV} + 1$$
  $\checkmark$   
=  $\frac{382,27}{47,12} + 1$   $\checkmark$   
= 8,11 + 1:1  
= 9.11:1  $\checkmark$ 

New compression Ratio = 
$$\frac{SV + CV}{CV}$$
   
=  $\frac{382.27 + 47.12}{47.12}$    
= 9.11:1

(6)

#### 7.5 **Calculations: Power:**

7.5.1 Indicated Power =
$$P \times L \times A \times N \times n$$
  
P=1400 kPa

$$L = \frac{110}{1000} = 0,11 \,\mathrm{m} \quad \checkmark$$

$$A = \frac{\#D^2}{4} \checkmark$$
$$= \frac{\#0,10^2}{4}$$
$$= 7,85 \times 10^{-3} \text{ m}^2 \checkmark$$

$$N = \frac{3600}{60 \times 2} \qquad \checkmark$$
$$= 30 \text{ r/s} \qquad \checkmark$$

Indicated Power = 
$$P \times L \times A \times N \times n$$
  $\checkmark$   
= $\left(1400 \times 10^{3}\right) \times 0,11 \times \left(7,85 \times 10^{-3}\right) \times 30 \times 4$   $\checkmark$   
= 145068 W  
= 145,07 kW  $\checkmark$  (8)

7.5.2  $T = F \times r$  $\checkmark$  $=(75 \times 10) \times 0.45$ =337,5 N.m  $\checkmark$ Brake power =  $2 \models N \times T$  $\checkmark$ =2 ⊨× 60× 337,5 =127234,5 W =127,23 kW  $\checkmark$ (4)

7.5.3 Mechanical efficiency = 
$$\frac{BP}{IP}$$
 100%  
=  $\frac{127,23}{145,07} \times 100\%$   $\checkmark$   
= 87,70%  $\checkmark$  (2)

TOTAL QUESTION 7: [32]

(Any 1 x 1)

(Any 3 x 1)

(Any 2 x 1)

(Any 2 x 1)

(1)

(3)

(2)

(2)

#### 13 NSC – Marking Guidelines

#### **QUESTION 8: MAINTENANCE (SPECIFIC)**

#### 8.1 Gas analyser:

- Exhaust gasses ✓
- CO gasses ✓
- CO₂ gasses ✓
- SO<sub>2</sub> gasses ✓
- NOx gasses ✓
- HC gasses ✓
- O<sub>2</sub> gasses ✓

#### 8.2 **Specification for gas analysis:**

- % Hydrocarbon / HC 🗸
- % Carbon monoxide / CO 🗸
- % Carbon dioxide / CO₂ ✓
- % Nitrogen oxide /  $NOx \checkmark$
- % Sulphur dioxide / SO<sub>2</sub>  $\checkmark$

#### 8.3 **Cylinder leakage test: (Results)**

- Hissing noise at air intake ✓
- Hissing noise at exhaust pipe ✓
- Hissing noise in dipstick hole ✓
- Hissing noise under tappet cover ✓
- Bubbles in radiator water ✓
- Hissing noise at adjacent cylinders ✓

#### 8.4 Cylinder Leakage test: (Causes)

- Worn cylinders ✓
- Worn piston ✓
- Worn piston rings ✓
- Leaking inlet valve ✓
- Leaking exhaust valve ✓
- Leaking cylinder head gasket ✓
- Cracked cylinder head / block ✓

#### 8.5 **Compression test procedures:**

- Get the engine to normal operating temperature. ✓
- Disconnect the fuel supply and ignition system. ✓
- Remove spark plugs. ✓
- Fit the compression tester ✓
- Depress the throttle and crank the engine a few revolutions. ✓
- Record and compare the pressure reading for each cylinder with manufacturers specifications. ✓

### 8.6 **Reasons for low oil pressure:**

- Worn oil pump ✓
- Blocked oil pump screen/filter/strainer in the sump ✓
- Worn main, big-end and camshaft bearings ✓
- Blocked or restricted oil filter  $\checkmark$
- Dirty or contaminated oil ✓
- Oil leaks ✓
- Too little oil in engine ✓
- Incorrect grade (viscosity) of oil ✓
- Pressure relief valve spring too weak or damaged ✓
- Plunger / Ball stuck in open position ✓
- Dirt stuck between ball and seat ✓

(Any 2 x 1) (2)

#### 8.7 **Cooling system pressure test:**

- Start engine and allow to heat up. Fit radiator pressure tester to radiator. ✓
- Pressurize the cooling system according to manufacture's specification. ✓
- Watch the pressure for a while, if it drops there is a leak. ✓
- Make a visual check for leaks. ✓
- Install radiator cap to tester and pump tester, the cap should release air at its rated pressure. ✓
- Check the rubber seal for cracks and damage. ✓
- Check the vacuum valve for free movement and operation. ✓

#### TOTAL QUESTION 8: [23]

(7)

#### QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 Differences between an automatic and manual gearbox:

- There is no clutch pedal in a motor vehicle with an automatic gearbox. / There is a clutch pedal in a motor vehicle with a manual dearbox. ✓
- There is no need to change gears, the shifting of the gears happens automatically. ✓
- Automatic transmission uses thin oil while manual gearbox uses thicker oil. ✓
- Automatic transmission uses torque converter while manual gearbox uses clutch assembly. ✓

(Any 2 x 1) (2)

#### 9.2 Advantages of automatic gearbox:

- It reduces driver fatigue ✓
- It ensures great reduction of wheel spin under bad road conditions ✓
- The vehicle can be stopped suddenly without the engine stalling  $\checkmark$
- The system dampens all engine torsional vibrations  $\checkmark$ •
- Easier to drive (e.g. Disabled person with one leg) ✓

#### 93 **Torque converter:**

#### 9.3.1 Torque converter function:

- Transfers engine torgue to the transmission. ✓
- It multiplies the engine torque to the transmission. ✓
- Provides a direct-drive, or mechanical link from the engine to the transmission.  $\checkmark$
- The torque converter dampens all engine torsional vibrations. <
- The torque converter acts as a flywheel.  $\checkmark$

(Any 2 x 1) (2)

(5)

#### 9.3.2 Parts:

A – One-way clutch / Turbine ✓

- B Turbine / Impeller ✓
- C Pump ✓
- D Turbine shaft ✓
- E Gearbox housing ✓

#### 9.4 Single epicyclic gear train:

- Overdrive forward ✓
- Overdrive reverse ✓
- Gear reduction forward ✓
- Gear reduction reverse ✓
- Direct drive ✓ •
- Neutral ✓

(Any 5 x 1) (5)

#### 9.5 Purpose of gear ratio in the gearbox:

- It is used in order to utilise the usable torque ✓ developed in a relatively limited speed range of the engine over a greater road speed range. ✓
- Allows different speeds ✓ depending on the different loads. ✓

(Any 1 x 2) (2)

**TOTAL QUESTION 9:** [18]

#### QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

#### 10.1 **Preliminary wheel alignment checks:**

- Kerb mass (tank full of petrol, spare wheel and tools) against the manufacturer's specifications. ✓
- Uneven wear on the tyre. ✓
- Tyre pressure. ✓
- Run-out on the wheels; check wheel nuts with torque wrench. ✓
- Correct preload on the wheel (hub) bearings. ✓
- Kingpins and bushes. ✓
- Suspension ball joints for wear, locking and lifting.  $\checkmark$
- Suspension bushes for excessive free movement. ✓
- Steering box play and whether secure on chassis. ✓
- Tie-rod ends. ✓
- Sagged springs, this includes riding height. ✓
- Ineffective shock absorbers. ✓
- Spring U-bolts. ✓
- Chassis for possible cracks and loose cross-members. ✓
- Wheels must be balanced ✓
- Wheel alignment specifications ✓
- Drive shafts / CV-joints ✓

#### 10.2 Caster

10.2.1 Negative ✓ Caster ✓

#### 10.2.2 **Parts:**

- A Contact point of king pin centre line  $\checkmark$
- B King pin ✓
- C Perpendicular line / vertical line / normal line  $\checkmark$
- D Negative caster angle  $\checkmark$
- E Centre line of king pin  $\checkmark$
- F Front of vehicle / Direction of wheel motion ✓
- G Point of wheel contact / Wheel  $\checkmark$
- 10.2.3 Negative caster angle is the forward tilt  $\checkmark$  of the kingpin at the top,  $\checkmark$  viewed from the side.  $\checkmark$

#### 10.3 **Toe-out:**



(Any 5 x 1) (5)

(2)

(7)

(3)

| 10.4  | <ul> <li>Purpose of the king pin inclination:</li> <li>To bring the front wheels back to the straight-ahead position ✓ after rounding a corner without any driver effort. ✓</li> <li>Reduce ✓ the scrub radius. ✓</li> </ul>                                            |      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       | (Any 1 x 2)                                                                                                                                                                                                                                                             | (2)  |
| 10.5  | Catalytic converter:<br>• Oxidation ✓<br>• Reduction ✓<br>(Any 1 x 1)                                                                                                                                                                                                   | (1)  |
| 10.6  | <b>Purpose of the speed control system:</b><br>The purpose of the speed control system is to control the throttle opening $\checkmark$ and to keep the vehicle speed constant. $\checkmark$                                                                             | (2)  |
| 10.7  | <ul> <li>Advantage of speed control:</li> <li>Driver fatigue is reduced. ✓</li> <li>The set speed is controlled constantly. ✓</li> <li>Improved fuel consumption. ✓</li> <li>A consistently controlled speed helps to prevent speeding fines. ✓ (Any 2 x 1) </li> </ul> | (2)  |
| 10.8  | <ul> <li>Fuel pressure regulator:</li> <li>Fuel pressure regulator regulates the fuel pressure in relation to the manifold pressure. ✓</li> </ul>                                                                                                                       | (1)  |
| 10.9  | <ul> <li>Output frequency of an alternator:</li> <li>Increase the turns of wire on the stationary coil. ✓</li> <li>Increase the magnetic fields. ✓</li> <li>Increase the rotational frequency at which the magnet rotates. ✓ (Any 2 x 1)</li> </ul>                     | (2)  |
| 10.10 | <ul> <li>Stator and stator windings:</li> <li>To provide a core which concentrates the magnetic lines of force onto the stator windings ✓</li> <li>To provide a coil into which a voltage is induced which is used to charge the battery. ✓</li> </ul>                  | (1)  |
| 10.11 | Function of rotor assembly:                                                                                                                                                                                                                                             | (-)  |
|       | <ul> <li>Is to provide a rotating electro-magnet. ✓</li> </ul>                                                                                                                                                                                                          | (1)  |
|       | TOTAL QUESTION 10:                                                                                                                                                                                                                                                      | [32] |
|       | TOTAL:                                                                                                                                                                                                                                                                  | 200  |