basic education Department: Basic Education REPUBLIC OF SOUTH AFRICA # NATIONAL SENIOR CERTIFICATE **GRADE 12** **AGRICULTURAL SCIENCES P1** **NOVEMBER 2019** **MARKING GUIDELINES** **MARKS: 150** These marking guidelines consist of 11 pages. **TOTAL SECTION A:** 45 # **SECTION A** # **QUESTION 1** | 1.1 | 1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10 | A ✓ ✓ B ✓ ✓ C ✓ ✓ D ✓ ✓ C ✓ ✓ D ✓ ✓ C ✓ ✓ D ✓ ✓ D ✓ ✓ D ✓ ✓ D ✓ ✓ D ✓ ✓ | (10 x 2) | (20) | |-----|---|--|----------|------| | 1.2 | 1.2.1
1.2.2
1.2.3
1.2.4
1.2.5 | B only ✓✓ A only ✓✓ Both A and B ✓✓ None ✓✓ A only ✓✓ | (5 x 2) | (10) | | 1.3 | 1.3.1
1.3.2
1.3.3
1.3.4
1.3.5 | Feed/fodder flow ✓✓ Lighting/bulb/lamp ✓✓ Internal/endo ✓✓ Hydrops/hydro/dropsy foetus/hydramnios ✓✓ Oogenesis/ovigenesis ✓✓ | (5 x 2) | (10) | | 1.4 | 1.4.1
1.4.2
1.4.3
1.4.4
1.4.5 | Cafeteria style/free choice ✓ Insulation ✓ Progesterone ✓ Abortion ✓ Acrosome ✓ | (5 x 1) | (5) | (1) (1) # **SECTION B** | QUESTION 2: | ANIMAL | NUTRITION | |--------------------|--------|-----------| |--------------------|--------|-----------| | 2.1 | Alimentary canals of farm animals | | | | | |-----|-----------------------------------|--|------------|--|--| | | 2.1.1 | Classification of animals DIAGRAM A - Ruminant/polygastric ✓ DIAGRAM B - Non-ruminant/monogastric ✓ | (2) | | | | | 2.1.2 | TWO adaptation features of animal in DIAGRAM A Complex/compound/polygastric/fore stomach/reticulo-rumen ✓ Large fermentation vessel/rumen ✓ Presence of rumen micro-flora/organisms ✓ (Any 2) | (2) | | | | | 2.1.3 | Reason for not feeding animal in DIAGRAM B with a ration high in crude fibre content • It has a monogastric/simple stomach/no fore stomach ✓ • Absence of micro-flora/cannot digest crude fibre ✓ (Any 1) | (1) | | | | | 2.1.4 | Explanation on how animal in DIAGRAM A benefits from non-protein nitrogenous substance Secretion of urease that changes urea into ammonia ✓ which is used to synthesise microbial protein that is later broken into amino acids ✓ | (2) | | | | 2.2 | Composition of ration | | | | | | | 2.2.1 | Identification of the feed (a) Carbohydrate-rich roughage: Oats hay ✓ (b) Protein-rich concentrate: Sunflower oil cake meal ✓ | (1)
(1) | | | | | 2.2.2 | Explanation for not recommending the ration as the only source of food for lambs Rumen of the lamb is still underdeveloped/abomasum is the only functioning compartment that cannot digest crude fibre ✓ Cannot digest feed with a high crude fibre content/roughage is too high/70% ✓ | (2) | | | | | 2.2.3 | Importance of grass hay in rations for mature ewes Grass hay is cheap and available ✓ To improve functioning of the digestive system ✓ Prevents bloating ✓ Supply the necessary bulkiness to the ration/main source of the ration ✓ Source of energy ✓ (Any 1) | (1) | | | | 2.3 | Pearso | on square | | | | | | 2.3.1 | Parts of the ration representing maize meal and sunflower oil cake meal | | | | Copyright reserved Please turn over • Maize meal - 20 parts ✓ Sunflower oil cake - 8 parts ✓ (1) #### 2.3.2 Calculation of the percentage of feed B in the mixture - 20 + 8 = 28 ✓ - Feed B = 20 x 100 ✓ 28 • = 71,43% ✓ (3) #### 2.3.3 Calculation of the quantities of maize in a 250 kg mixture - <u>20</u> x 250kg ✓ 28 - = 178,6Kg ✓ **OR** • <u>71,43 x 250kg</u> ✓ 100 $\bullet = 178,6 \text{kg} \checkmark \tag{2}$ #### 2.4 Nutritive Ratio #### 2.4.1 Calculation of the Nutritive ratio of FEED B with a formula - NR = 1: <u>%TDN − %DP</u> ✓ %DP - 1: 80% 7% ✓ - NR = 1 : 10,4/10 ✓ **OR** - NR = 1: % <u>DNNN/DNNS</u> ✓ %DP - 1:<u>73</u> ✓ • NR = 1: $10,4/10 \checkmark$ (3) #### 2.4.2 Justification of the suitability of FEED A and FEED B for growth - FEED A: Suitable because it has a narrow nutritive ratio/more proteins/less carbohydrates ✓ - FEED B: Not suitable because it has a wide nutritive ratio/ less proteins/more carbohydrates ✓ (1) #### 2.5 Energy value of the feeds #### 2.5.1 Calculation of the energy value represented by A ME = GE – Energy lost through faeces – Energy lost through urine and gases ME = $$19J - 7J - 4J$$ **OR** $19 - (7+4)$ $11J$ \checkmark ME = $8J$ \checkmark (2) 2.5.2 Identification of the energy loss in B Energy lost through heat ✓ (1) #### 2.5.3 TWO importance of energy in C for animals - For maintenance ✓ - For production ✓ - For reproduction ✓ - Physical work done ✓ • Growth ✓ (Any 2) (2) 2.6 Bar graph of the different quantities of minerals in rations #### CRITERIA/RUBRIC/MARKING GUIDELINES - Correct heading ✓ - X axis: Correctly calibrated with label (Rations) ✓ - Y axis: Correctly calibrated with label (Quantities) ✓ - Correct units (mg/kg) ✓ - Bar graph ✓ - Accuracy ✓ (6) [35] #### QUESTION 3: ANIMAL PRODUCTION, PROTECTION AND CONTROL - 3.1 The lowest critical temperature and heat production of different farm animals - 3.1.1 Identification of TWO animals that need to be kept under intensive production system - Piglets ✓ - Day old chickens ✓ - 3.1.2 **Reason** The lowest critical temperature is the highest/lowest heat produced ✓ (1) 3.1.3 Animal that would be most economical to keep without facilities Dairy cattle ✓ (1) | | 3.1.4 | TWO reasons from the graph Their lowest critical temperature is the lowest ✓ They can generate more heat to keep warm ✓ | | (2) | |-----|---|---|-------------|------------| | | 3.1.5 | The impact of decrease in temperature below 25°C on feed Piglets will eat more ✓ | intake | (1) | | 3.2 | Produ | uction system | | | | | 3.2.1 | Identification of the production system in picture C Backyard system/free range/semi-intensive ✓ | | (1) | | | 3.2.2 | Reason Chickens move freely around the house during the day Are kept inside the shelter ✓ Feed is provided ✓ | /
Any 2) | (2) | | | 3.2.3 | Indication of the letter of the picture (a) Picture B ✓ (b) Picture A ✓ | | (1)
(1) | | | 3.2.4 | Differentiation between facility in terms of their purpose Facility in A - Animals are kept for handling/management practices/auction/temporarily ✓ Facility in D - Animals are kept for housing/feeding/grown permanently ✓ | | (1)
(1) | | | 3.2.5 | Role of equipment labelled E in picture D For automatic dispensing of animal feed ✓ | | (1) | | 3.3 | A A U A A N G T A Li | basic guidelines for handling large farm animals nnounce your approach through touch from the front/side ✓ void the blind spot ✓ void the kicking region when approaching animals ✓ se proper handling facilities/special facilities for male animals ✓ lways leave yourself an escape way ✓ void entering small area enclosed with large animals ✓ ever poke/prod/throw objects to animals ✓ ever poke/prod/throw objects to animals ✓ sive animals time to adjust before working with them ✓ ake special care when working with cows that have calves ✓ void children/visitors/non-workers approaching animals ✓ imit/reduce noise levels ✓ andle animals in a group/herd ✓ | (Any 2) | (2) | | 3.4 | Paras | sites | | | | | 3.4.1 | Classification of PARASITE A according to its life cycle One/single-host tick ✓ | | (1) | | | 3.4.2 | Protozoan disease transmitted by the parasite Red water ✓ Anaplasmosis/gall sickness ✓ | (Any 1) | (1) | | | 3.4.3 | ndication of the letter of the parasite (a) Parasite C ✓ (b) Parasite B ✓ | (1)
(1) | | | |-----|-----------------|--|-------------------|--|--| | | 3.4.4 | TWO requirements of the use of medication Medicine must be safe for the specific animal ✓ Check expiry date ✓ Correct dosage according to weight and age ✓ Correct method of administering the medicine ✓ Correct period of application/ correct intervals between administering medication ✓ Proper storage according to instructions ✓ Use registered medicine ✓ Use sterilized equipment ✓ (Any 2) | (2) | | | | 3.5 | Animal diseases | | | | | | | 3.5.1 | Disease affecting Animal 1 - Anthrax ✓ Animal 2 - Lumpy wool ✓ Animal 3 - Rabies ✓ | (1)
(1)
(1) | | | | | 3.5.2 | ndication of the animal suffering from a deadly bacterial disease
Animal 1 ✓ | (1) | | | | | 3.5.3 | Pathogen causing disease in ANIMAL 2
Fungus ✓ | (1) | | | | | 3.5.4 | ONE precautionary measure to prevent the spread of disease in ANIMAL 3 • Vaccination/inoculation/immunisation ✓ • Awareness/education/notify authorities ✓ • Isolation ✓ (Any 1) | (1) | | | | | 3.5.5 | TWO roles of the state in controlling the spread of the disease in ANIMAL 1 • Establish quarantine zone ✓ • Restricted movement from/to infected areas/import/export bans ✓ • Destroying/correct disposal of infested carcasses/materials ✓ • Inoculation/vaccination/immunisation of healthy stock/veterinarian services ✓ • Public awareness ✓ (Any 2) | (2) | | | # 3.6 **Salt poisoning** | | 3.6.1 | TWO symptoms of salt poisoning in animals Excessive salivation ✓ Increased thirst ✓ Vomiting ✓ Constipation ✓ Wobbling/circling/seizures/blindness/partial paralysis ✓ Dragging of the hind legs/knuckling of the fetlock ✓ Mucous membranes of the mouth are red and dry ✓ Hypersensitivity to touch ✓ Frequent urination ✓ Inflammation of the stomach and intestines ✓ Aggressiveness ✓ Diarrhoea ✓ | (Any 2) | (2) | |-------|--------|--|-----------|--------------------| | | 3.6.2 | TWO measures to treat an animal with salt poisoning Provision of fresh water in small amounts at short intervals Small animals can be given a hypertonic dextrose/isotonic solution ✓ | | | | | | Removal of the source ✓ | (Any 2) | (2)
[35] | | QUEST | ION 4: | ANIMAL REPRODUCTION | | | | 4.1 | Repro | oductive cycle in farm animals | | | | | 4.1.1 | Hormones initiating mating in ANIMAL A and ANIMAL B • ANIMAL A - Oestrogen ✓ • ANIMAL B - Testosterone ✓ | | (1)
(1) | | | 4.1.2 | Function for each hormone Oestrogen - Makes cow to come into oestrus/allow mating Testosterone - Stimulates mating behaviour in the bull ✓ | ✓ | (1)
(1) | | | 4.1.3 | Identification of the reproductive processes (a) Fertilization/pregnancy/gestation ✓ (b) Parturition/birth giving/calving ✓ | | (1)
(1) | | | 4.1.4 | Hormone initiating milk let-down Oxytocin ✓ | | (1) | | | 4.1.5 | The function of oxytocin in milk let-down It causes contraction of the myoepithelial cells surrounding the to release the milk ✓ | e alveoli | (1) | | 4.2 | Sperr | n morphology | | | | | 4.2.1 | Process during which the sperm cells above are formed Spermatogenesis ✓ | | (1) | | | 4.2.2 | Identification of the sperm cell that can constituting good quality semen | | |-----|-------|--|-------------------| | | | Sperm cell A ✓ | (1) | | | 4.2.3 | Instrument to evaluate sperm cells Microscope ✓ | (1) | | | 4.2.4 | Explanation of how sperm cell in B and C affect the ability of the bull to fertilize SPERM CELL B - It cannot fuse with the egg cell because it does not have an acrosome/no head ✓ SPERM CELL C - It cannot move towards the point of fertilization since it does not have a tail ✓ | (1)
(1) | | 4.3 | Corre | ct technique for Al | | | | 4.3.1 | Re-arranging the steps during AI A cow is sheltered and kept calm ✓ Excess faecal matter is removed ✓ Inseminator checks abnormalities and whether the cow is not pregnant by inserting the hand through the rectum ✓ The pistolette is guided through the vulva, vagina to the cervix ✓ | (4) | | | 4.3.2 | TWO disadvantages of Al for the farmer Disease transmission can affect large number of cows ✓ Infections can occur/venereal diseases can spread quickly ✓ Genetic abnormalities can occur ✓ Inexperienced operator can damage the reproductive organs ✓ Low success rate when using inexperienced technician ✓ Labour intensive ✓ Expensive ✓ More time consuming ✓ Not always successful ✓ Does not necessarily improve the genetics of the herd ✓ Genetic variability can decrease ✓ If records are not kept carefully, inbreeding can occur ✓ Undesirable traits can be transferred to more offspring ✓ (Any 2) | (2) | | 4.4 | Foeta | l membranes | | | | 4.4.1 | Stage of pregnancy Foetal stage ✓ | (1) | | | 4.4.2 | Indication of the letter of the membrane (a) A ✓ (b) B ✓ (c) C ✓ | (1)
(1)
(1) | #### 10 SC/NSC – Marking guidelines #### 4.5 **Parturition** #### 4.5.1 TWO behavioural signs of an animal that is about to give birth - Isolates herself from the herd ✓ - Loss of appetite ✓ - Show signs of distress and discomfort ✓ - Restlessness ✓ - Nesting behaviour/circles searching for a hiding place ✓ - Frequent urination ✓ - Bellowing noises ✓ (Any 2) (2) # 4.5.2 TWO causes of problems during birth in heifers - Large foetus/small sized heifer ✓ - Multiple births ✓ - Inexperience ✓ - Incorrect presentation ✓ - Malformed foetus/hydrocephalous ✓ - Size of the pelvic area ✓ - Incomplete/failure of the cervix to dilate ✓ - Prolonged parturition/ineffective/weak labour ✓ - Inertia of the uterus ✓ - Torsion of the uterus ✓ - Length of the gestation period ✓ - Poor body conformation ✓ - Malnutrition ✓ - Diseases ✓ (Any 2) (2) #### 4.6 The importance of the aspects of embryo transfer #### 4.6.1 **Superovulation** For the production of more genetically superior ova ✓ (1) #### 4.6.2 Embryo flushing For the harvest of more embryos from superior/donor cows ✓ (1) #### 4.6.3 Donor cow For the production of superior embryo's ✓ (1) #### 4.6.4 Recipient cow For implantation of the harvested embryo's ✓ (1) #### 4.7 **Nuclear transfer** #### 4.7.1 Importance of nuclear transfer #### (a) Farmer - Animals with desirable traits can be produced to meet the specific production needs ✓ - Preserve superior genes/animals ✓ - Farmers can produce high-quality safe and healthy food ✓ - Animals can be bred that is more resistant to diseases ✓ - Frozen cloned embryos can be transported worldwide ✓ Many clones can be obtained from one female ✓(Any 1) # SC/NSC – Marking guidelines #### (b) Veterinarian services - Production of stem cells to find cures for diseases ✓ - Research ✓ - Valuable medicines can be produced in the milk of cows/sheep/goats ✓ - Animals with a slightly modified genetic make-up can be produced for transplantation into humans ✓ - Preserve rare/endangered species ✓ (Any 1) (1) # 4.7.2 TWO disadvantages of a nuclear transfer - Cloned animals have a shorter lifespan ✓ - Genetic abnormalities of a cloned animal can be transmitted to the offspring ✓ - It is expensive ✓ - Cloned animals have a low immune system ✓ - Offspring are large causing problems during parturition ✓ - Genetic diversity deteriorates/reduces variation ✓ - Premature aging of cloned animals resulting in early death ✓ - Offspring of cloned animals encounter problems with vital organs such as lungs, heart and kidneys ✓ - Requires specific skills ✓ (Any 2) (2) [35] TOTAL SECTION B: 105 GRAND TOTAL: 150