

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 16 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE (Generic)

1.1	B✓	(1)
1.2	C ✓	(1)
1.3	A✓	(1)
1.4	C✓	(1)
1.5	A✓	(1)
1.6	C√	(1) [6]

QUESTION 2: SAFETY (Generic)

2.1 Machine safety rule:

- Know how to switch the machine off / emergency stop. ✓
- Wear personal protective equipment (PPE). ✓
- Know how to use the machine. ✓
- Ensure that all guards are in place. ✓
- No tools lying on the machine. ✓
- Work piece is properly secured. ✓
- Check the condition of the machine. ✓
- Follow manufacture's specifications before operating a machine. ✓
- Operator must have authorization to working on a machine. ✓
- Make sure the machine is not locked out. ✓
- Ensure that the machine setup is correct and safe. ✓
- Ensure that the machine area is clean and safe. \checkmark
- (**Any 1 x 1**) (1)

2.2 **Drill press safety precautions:**

- To prevent injuries. ✓
- To improve accuracy. ✓
- To prevent work piece rotating/moving. ✓
- To prevent the drill bit from breaking. ✓

2.3 Hydraulic press safety rules:

- Make sure the press is in a good working condition. ✓
- Take notice of the pre-determined maximum pressure of the hydraulic press. ✓
- Make sure the area around the press is clean and free of oil, grease and water. \checkmark
- Ensure that the platform is rigid and square to the cylinder. ✓
- Ensure that suitable jigs and prescribed equipment is available. \checkmark
- Check hydraulic pipes for leaks or cracks. ✓
- Check supporting pins are not worn out and fitted properly. ✓

(**Any 1 x 1)** (1)

- Check fluid levels. ✓
- Compressive force must be applied at 90° to the object. ✓
- Check cable and pulleys on the platform if equipped. ✓
- Correct PPE. ✓
- Pressure gauge must be checked and calibrated. \checkmark
- Ensure that all guards are in place. ✓

(Any 2 x 1) (2)

2.4 **Reasons for wearing surgical gloves:**

- To prevent HIV/AIDS or any blood related infections being transmitted.✓
- To prevent contamination of the open wounds. \checkmark

2.5 **Safe handling of portable electrical equipment:**

- Ensure the electrical cord and plug, are in a good condition. \checkmark
- Ensure all safety guards are in place. ✓
- Ensure that the correct attachments (drill bits, blades etc.) are fixed in the correct way. ✓
- Do not force the machine/equipment. ✓
- Operate according to manufacturer instructions. ✓
- Avoid contact with water. ✓
- Keep the cable away from heat, oil, sharp edges and moving parts. \checkmark
- Make sure that the wires don't wrap around each other. \checkmark
- Avoid dropping the machine. \checkmark
- Check the condition of the equipment. \checkmark

2.6 **Responsibility of employer:**

- Provide and maintain working systems, work area, equipment and tools in a safe condition. ✓
- Eliminate or reduce any potential hazard. ✓
- Produce, handle, store and transport goods safely. ✓
- Ensure that every person employed complies with the requirements of this OHS Act. \checkmark
- Enforce measures if necessary in the interest of health and safety. ✓
- Appoint a person who is trained and who have the authority to ensure that the employee takes precautionary measures. ✓
- Inform employees of the hazards to his health and safety attached to any duty or work situation. ✓
- Provide first aid equipment. ✓

(Any 1 x 1) (1)

(2)

(Any 2 x 1)

(2)

2.7 **Responsibility of employee:**

- Pay attention to their own and other people's health and safety. ✓
- Co-operate with the employer regarding the OHS Act. ✓
- Carry out a lawful order given to them. ✓
- Report any situation that is unsafe or unhealthy. ✓
- Report all incidents and accidents. ✓
- Not to interfere with any safety equipment or misuse such equipment.
- Obey all safety rules. ✓

(Any 1 x 1) (1)

[10]

QUESTION 3: MATERIAL (Generic)

3.1 **Filing test:**

- Use the right ✓ filing skills. ✓
- File on the tip or edge $\checkmark \checkmark$ of the metal.
- By applying chalk ✓ to the file surface. ✓

(Any 1 x 2) (2)

3.2 **Purpose of heat treatment of steel:**

Heat treatment of steel is done to change \checkmark the properties/grain structure \checkmark of steel. (2)

3.3 **Reasons for tempering hardened steel:**

- To reduce \checkmark the brittleness \checkmark caused by the hardening process.
- To relieve ✓ strain ✓ caused during hardening process.
- To increase \checkmark the toughness \checkmark of the steel.
- To give hardened work piece a more ✓ fine-grained structure. ✓

(Any 2 x 2) (4)

3.4 Heat treatment processes on steel:

3.4.1 **Annealing:**

- The steel is heated to the prescribed temperature. ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then cooled very slowly to produce maximum softness. ✓

3.4.2 Hardening:

- The steel is heated slightly higher than the upper critical temperature. (AC₃) ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then rapidly cooled by quenching in rapid cooling medium. ✓

(3) [**14**]

(3)

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (Specific)

4.1	A✓	(1)
4.2	C✓	(1)
4.3	D✓	(1)
4.4	B✓	(1)
4.5	C✓	(1)
4.6	D✓	(1)
4.7	A✓	(1)
4.8	B✓	(1)
4.9	C✓	(1)
4.10	B✓	(1)
4.11	C✓	(1)
4.12	D & B ✓	(1)
4.13	B✓	(1)
4.14	B✓	(1) [14]

QUESTION 5: TOOLS AND EQUIPMENT (Specific)

5.1 **Cylinder leakage tester:**

5.1.1	Labels: A – Pressure control valve/Knob/Regulator ✓ B – Gauge/Meter ✓ C – Compressor hose/Air hose/Pipe ✓ D – Spark plug connector/adapter/Hose/Pipe ✓	(4)
5.1.2	 Purpose of cylinder leakage tester: To determine the percentage ✓ of gas leakage from a cylinder. ✓ To determine the location ✓ of gas leaks from a cylinder. ✓ (Any 1 x 2) 	(2)

5.1.3 **Procedure for cylinder leakage test:**

- Turn the crank shaft until both valves on cylinder no. 1 are closed (piston no.1 is on power stroke). ✓
- Remove the spark plug and connect the spark plug adaptor (tester) to the spark plug hole. ✓
- Use a spanner to lock the crankshaft pulley so that it cannot turn. ✓
- Release air into the cylinder according to the prescribed pressure. ✓
- The reading will indicate the percentage gas leakage. ✓
- A hissing sound at various points indicates the location of the leak. ✓

5.2 **Compression tester:**

5.2.1 **Purpose of compression test:**

- To determine the amount of compression pressure ✓ from a specific cylinder during compression stroke (BDC TDC). ✓
- To determine the condition ✓ of the engine's valves, valve seats and piston rings. ✓

5.2.2 **Compression tester release valve:**

- Remove the pressure from the gauge ✓ to ensure an accurate reading. ✓
- Remove the pressure from the gauge ✓ to prevent damage to the gauge. ✓
 - (Any 1 x 2) (2)

(Any 1 x 2)

5.3 **Gases analysed:**

- Carbon monoxide (CO) ✓
- Hydrocarbon (HC) ✓
- Carbon dioxide (CO₂) ✓
- Nitrogen oxide (NOx) ✓
- Sulphur dioxide(SO₂) ✓
- Oxygen (O₂) ✓

5.4 **Purpose of turn tables:**

Turn table makes it possible to turn \checkmark the front wheels when conducting wheel alignment settings. \checkmark

5.5 **Outcomes of dynamic wheel balancing is to check:**

- The plane of imbalance. \checkmark
- The extent of unbalancing forces. ✓
- The direction of these forces. (clockwise or counter-clockwise) \checkmark
- Wheels balanced on all planes. ✓
- Less vibration on the steering. \checkmark
- Even tyre wear. ✓

(Any 2 x 1) (2)

(2)

(6)

(2)

QUES	TION 6: EI	NGINES (Specific)	
6.1	 The The Wor Une 	haft vibration: a action upon the shaft of unbalanced forces. ✓ a torsional or twisting effect of the power strokes upon the shaft. ✓ rn vibration damper. ✓ even flywheel wear. ✓ balanced crankshaft. ✓ (Any 2 x 1)	(2)
6.2	Vibratic	on Damper:	
	6.2.1	Vibration damper ✓	(1)
	6.2.2	Labels: A – Crankshaft ✓ B – Crankshaft flange/pulley ✓ C – Secondary flywheel ✓ D – Friction disc/Rubber ✓ E – Friction spring ✓ F – Spring plate/Disc ✓	(6)
	6.2.3	The vibration damper adds mass to the crankshaft on the opposite side \checkmark of the normal flywheel in order to counteract the torsion of the crankshaft. \checkmark	(2)
6.3	• The	prder of an engine:	
6.4	'V8' ang 90° √		
6.5		tercooler: o cool the air that has been compressed by the turbo-charger. \checkmark	
6.6	 To f atm To i 		
6.7	Centrifu	ıgal supercharger:	(2)
	6.7.1	Centrifugal supercharger/blower ✓	(1)
	6.7.2	Labels: A – Air inlet ✓ B – Air outlet/Exhaust ✓	

- C Casing/Housing/Cover/Body ✓
- D Impeller/Turbine ✓
- E Fins/Vanes/Blades ✓

(5)

7

6.7.3 **Operation:**

- This blower can be driven mechanically by means of a belt drive from the crankshaft. ✓
- The shaped fins on the impeller move the air around to the outer edge of the impeller into the housing. ✓
- The rotating fins leave a low pressure behind it. ✓
- Due to atmospheric pressure, air rushes in to fill the low pressure at the centre of the impeller. ✓
- The impeller rotates so fast that a continuous movement of air is present, which now builds up a pressure as it is thrown at the rim or the edge. ✓

QUESTION 7: FORCES (Specific)

7.1 Swept volume:

Volume when the piston moves \checkmark from bottom dead centre to top dead centre. \checkmark

7.2 Method to increase compression ratio:

- Remove shims between the cylinder block and cylinder head. ✓
- Fit thinner cylinder head gasket. ✓
- Machine metal from cylinder head. ✓
- Fit a piston with a higher crown. ✓
- Fit a crankshaft with a longer stroke/through. ✓
- Increase the bore of the cylinders/bigger pistons. ✓

7.3 **Compression ratio:**

7.3.1 Swept volume:

Swept Volume =
$$\frac{\pi D^2}{4} \times L$$
 \checkmark
= $\frac{\pi (9,0)^2}{4}$ 10,0 \checkmark
= 636.17 cm³ \checkmark

7.3.2 **Original clearance volume:**

Compression Ratio=
$$\frac{SV+CV}{CV}$$
$$CV = \frac{SV}{CR-1} \checkmark$$
$$= \frac{636,17}{10,5-1} \checkmark$$
$$= \frac{636,17}{9,5}$$
$$= 66,97 \text{ cm}^3 \checkmark$$

(3)

(Any 3 x 1) (3)

(5) [**28**]

(2)

(3)

7.3.3 New bore diameter:

New compression ratio =
$$\frac{SV}{CV} + 1$$

 $11:1 = \frac{SV}{66,97} + 1$ \checkmark
 $SV = 66,97 \times 10$
 $\frac{\pi D^2}{4} \times L = 669,7$ \checkmark
 $D^2 = \frac{669,7 \times 4}{\pi \times 10}$
 $D = \sqrt{85,27}$ \checkmark
 $= 92,34 \text{ mm}$ \checkmark

7.4 **Power:**

7.4.1 Indicated Power:

$$IP = P \times L \times A \times N \times n$$

$$P = 1300 \text{ kPa}$$

$$L = \frac{160}{1000}$$

$$= 0,16 \text{ m} \checkmark$$

$$A = \frac{\pi D^2}{4}$$

$$= \frac{\pi 0,12^2}{4}$$

$$= 1,13 \times 10^{-2} \text{ m}^2 \checkmark$$

$$N = \frac{4500}{60 \times 2}$$

$$= 37,5 \text{ ps/s} \checkmark$$

$$n = 4 \text{ cylinders}$$

$$IP = P \times L \times A \times N \times n$$

$$= (1300 \times 10^3) \times 0,16 \times (1,13 \times 10^{-2}) \times 37,5 \times 4 \checkmark$$

(5)

(6)

(2)

[32]

(5)

7.4.2 **Brake Power:** $BP = 2\pi \times N \times T$ $=2\pi\times 610\times \frac{4500}{60}$ $=2\pi \times 610 \times 75$ = 287455,73 W 🗸 = 287,46 kW ✓ (4)

7.4.3 **Mechanical efficiency:**

Mechanical efficiency = $\frac{BP}{IP}$ 100% $=\frac{287,46}{352,56}\times100\%$ = 81,54% (2)

- 7.5 Mechanically efficiency is based on the relationship of the power developed within the engine \checkmark and the actual brake power delivered at the fly wheel. ✓
- 7.6 **Brake Power** is the useable power ✓ developed at the flywheel. ✓ (2)

QUESTION 8: MAINTENANCE (Specific)

8.1 Radiator cap pressure test:

- Install the cap on the cooling system pressure tester. \checkmark •
- Pump up the tester while watching the pressure gauge. \checkmark .
- The pressure cap should release air at the rated pressure stamped on . the cap. ✓
- The cap should hold the pressure for at least one minute. \checkmark .
- If not install new cap. ✓

8.2 Causes and correction for pressure drop: Causes:

- Leaks between components of the cooling system. \checkmark •
- Leaks at water hose. ✓ •
- Blown cylinder head gasket. •
- Leaks at water pump. ✓ •
- Leaks at radiator. ✓ •
- Leaks at corroded welsh or core plug. ✓ ٠
- Leaks at interior heater radiator. ✓ •
- Leaks at heater tap. ✓ •

(Any 2 x 1)

(Any 2 x 1)

(Any 2 x 1)

(4)

(2)

11 NSC – Marking Guidelines

Corrections:

- Renew the gaskets and seals. ✓
- Renew faulty hoses and secure clamps. ✓
- Skim the cylinder head and replace cylinder head gasket. ✓
- Renew water pump. ✓
- Renew the radiator. ✓
- Renew welsh or core plugs. ✓
- Renew interior radiator. 🗸
- Renew radiator tap. ✓

8.3 **Specification to conduct cooling system pressure test, check for:**

- Water and anti-freeze ratio. ✓
- Pressure allowed in the radiator. \checkmark
- Pressure of radiator cap. ✓
- Reading of the cooling system pressure tester. ✓

8.4 Safety: Compression test:

- Ensure that tester can handle the pressure you want it test. \checkmark
- Clean spark plug area to prevent dirt entering when you remove spark plug. \checkmark
- Ensure rubber hoses on tester are in good order. ✓
- Ensure release valve on the tester is working. ✓
- Ensure using the right spark plug adaptor.
- Disconnect high tension leads. ✓
- Disconnect the fuel feed. ✓
- Make sure the tester is at zero mark. ✓
- Ensure that the air filter is clean. \checkmark

(Any 4 x 1). (4)

8.5 **Gas analyser results:**

8.5.1 **High carbon monoxide (CO) reading:** Causes:

- Too rich mixture. ✓
- Ignition misfire. ✓
- Dirty or restricted air filter. ✓
- Improper operation of the fuel delivery system.✓
- Faulty thermostat or coolant sensor. ✓
- Non-functioning PCV valve system. ✓
- Faulty catalytic converter. ✓

(Any 1 x 1) (1)

8.5.2	 Corrective measures: Reset fuel mixture. ✓ Check for misfire and repair. ✓ Replace air filter. ✓ Check and correct fuel delivery system. ✓ Check and repair coolant sensor. ✓ Check and repair PCV valve. ✓ Check and repair or replace catalytic converter. ✓ (Any 1 x 1) 	(1)
8.5.3	 Low carbon dioxide (CO₂) reading: Causes: Fuel mixture too rich or lean. ✓ Exhaust system leaks. ✓ Ignition misfire. ✓ Dirty or restricted air filter. ✓ Improper operation of the fuel delivery system.✓ Faulty thermostat or coolant sensor. ✓ Non-functioning PCV valve system. ✓ Faulty catalytic converter. ✓ 	
	(Any 1 x 1)	(1)
8.5.4	 Corrective measures: Reset fuel mixture. ✓ Repair or replace exhaust system. ✓ Check for misfire and repair. ✓ Replace air filter. ✓ Check and correct fuel delivery system. ✓ Check and repair coolant sensor. ✓ Check and repair PCV valve. ✓ Check and repair or replace catalytic converter. ✓ 	(1)
8.5.5	 High hydrocarbon (HC) reading: Causes: Excessive unburned fuel by incomplete combustion. ✓ Improper timing. ✓ Vacuum leak. (Low fuel pressure) ✓ Leaking fuel injector. ✓ Defective cold start valve. ✓ Faulty air management system. ✓ 	

(Any 1 x 1) (1)

	 8.5.6 Corrective measures: Reset fuel mixture. ✓ Check and reset ignition system. ✓ Check and repair vacuum leaks. ✓ Check and repair/replace fuel injector. ✓ Check and repair/replace cold start valve. ✓ Check and repair air management system. ✓ 	(1)
8.6	 Specification to conduct fuel pressure test, check for: Fuel pressure before the carburettor. ✓ Fuel pressure before and after the injector pump. ✓ Fuel pressure when engine is idling. ✓ Fuel pressure on high revolutions. ✓ 	(2)
	(*** ·y = ** ·)	[23]
QUEST	TON 9: SYSTEMS AND CONTROL (Automatic gearbox) (Specific)	
9.1	 Purpose of an automatic gearbox: To relieve ✓ the driver of clutch and gearshift operation. ✓ To promote ✓ smoother and easier ✓ driving of the vehicle. (Any 1 x 2) 	(2)
9.2	 Advantages of vehicle fitted with an automatic gearbox: It reduces driver fatigue. ✓ It reduces wheel spin under bad road conditions. ✓ The vehicle can be stopped suddenly without the engine stalling. ✓ The system dampens all engine torsional vibrations. ✓ It is easier to drive. (e.g. Disabled persons) ✓ 	(2)
9.3	 Disadvantages of vehicle fitted with an automatic gearbox: Automatic gearbox is more expensive to manufacture/maintain. ✓ If a car with automatic gearbox has to be towed for along distance the propeller shaft must be removed. ✓ Automatic gearbox makes the vehicle heavier that with a manual 	
	gearbox. ✓ (Any 2 x 1)	(2)
9.4	Torque converter:	
	9.4.1 Labels: A – Ring gear/flex plate ✓ B – Casing ✓ C – Stator ✓	

- D Impeller/Pump ✓ E Transmission/Shaft/Spigot ✓
- F Fluid path/Impeller/Pump \checkmark G Vanes \checkmark
- H Turbine ✓

Copyright reserved

13

	9.4.2	 Advantages of torque converter: Torque increases automatically. ✓ Torque is transferred smoothly to reduce shocks on the gearbox, chassis and wheels. ✓ Minimum servicing is required. ✓ Disconnects at low revolutions. ✓ 	(2)	
	9.4.3	Increasing torque converter speed:		
	0.110	Torque multiplication tapers off ✓ (reduce/decrease) gradually. ✓	(2) [18]	
	FION 10: onics) (Spe	SYSTEMS AND CONTROL (Axles, steering geometry and ecific)		
10.1	Tyre we	Tyre wear:		
	10.1.1	 Feathering: Toe-in or toe-out wear ✓ Worn out king pin ✓ (Any 1 x 1) 	(1)	
	10.1.2	 One side of the thread worn: Camber wear ✓ Worn out king pin ✓ Incorrect wheel alignment ✓ 	(1)	
			(1)	
10.2	 Ligh Free As of effort Self Able 	centring. \checkmark to operate without being affected by the action of the suspension		
		raking system. ✓ (Any 2 x 1)	(2)	
10.3	King pir	n inclination:		
	10.3.1	Label: A – Offset/Scrub radius/pivot angle radius ✓ B – 90° - Perpendicular ✓ C – Wheel centre line ✓ D – King pin inclination angle ✓ E – Steering axis centre line/King-pin centre line ✓	(5)	

King pin inclination is the inward tilt \checkmark of the top of the king pin 10.3.2 viewed from the front. \checkmark

Copyright reserved

Please turn over

(2)

14

10.4 Ackerman angle layout:

Labels:

- A Rear axle ✓
- B Longitudinal axis ✓
- C Front wheels ✓
- D Steering arms ✓
- E Extended centre lines from steering arms \checkmark
- F Intersection/Centre point ✓

(Any 3 x 1) (3)

(3)

(2)

10.5 **Purpose of Toe-out on turns:**

The toe-out effect in a turn, gives a true rolling motion \checkmark to the front wheels in a corner without scuffing. \checkmark

10.6 Wheel balancing pre-checks:

- The tyres for bruises, cracks and damaged side walls.
- The wheel rims for damaged beads. ✓
- For foreign matter on rim and tyres. ✓
- Tyre pressure. ✓
- Tyre thread wear. ✓

(Any 2 x 1) (2)

10.7 **Purpose of catalytic convertor:**

The catalytic convertor converts the pollutants \checkmark in the exhaust gases of the engine into non – toxic substances making it environmentally friendly. \checkmark

10.8 Adaptive speed control:

- Maintain a speed as set by the driver. ✓
- Adapt this speed and maintain a safe distance from the vehicle in front.
- Provide a warning if there is a risk of a collision. ✓
- Prevent driver fatigue. ✓
- To control the set speed. ✓
- Improve fuel economy. ✓
- A constant controlled speed setting prevents speeding fines. ✓

(Any 3 x 1) (3)

10.9 **Function of slip-ring and brush assembly:**

Provide a moveable connection ✓ in order to allow current flow. ✓

10.10 **Diode symbol:**

10.11 Advantages of electric fuel pump:

- Immediate supply of fuel when the ignition switch is turned on. \checkmark
- Low operation noise. ✓
- Less discharge pulsation of fuel. ✓
- Compact and lighter design. ✓
- Characterised to prevent fuel leak and vapour lock. ✓
- Delivers fuel at higher pressures. ✓
- Can be placed anywhere in the fuel line. ✓

(Any 2 x 1) (2)

[32]

TOTAL: [200]

16 NSC – Marking Guidelines

(2)

(2)

(2)