

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2017

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
RT/RG/RD	Reading from table/graph/diagram
SF	Correct substitution in formula
О	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
AO	Answer only full marks
NPR	No penalty for rounding
J	Justification

This memorandum consists of 15 pages.

QUEST	TION 1 [31 marks]		
Ques	Solution	Explanation	Level
1.1.1	World population = 65,3 million \times 113 \checkmark M = 7 378,9 million \checkmark S = 74 hundred million \checkmark R = 7 400 million = 7 400 000 000 = 7,4 billion	1M multiplying 1S simplification in millions 1R answer in hundred million	L2 D
		(3)	
1.1.2	% Europe = $100\% - (12\% + 29\% + 14\% + 39\%)$ = 6% \checkmark A	1M adding to get 94% 1A percentage for Europe	L3 D
	Total displaced people = $(65,3 + 21,3 + 10)$ million = $96,6$ million \checkmark A	1A total	
	Number of people distributed in Europe $= 6\% \times 96.6$ million \checkmark M	1M percentage calculation	
	= 5,796 million OR 5 796 000 ✓CA	1CA number in Europe	
	OR	OR	
	Total displaced people = $(65,3 + 21,3 + 10)$ million = $96,6$ million \checkmark A	1A total	
	$12\% + 29\% + 14\% + 39\% = 94\%$ \checkmark A	1A adding to get 94%	
	94% × 96,6 million = 90,804 million Number of people in Europe	1M percentage calculation	
	$= 96.6 \text{ million } -90.804 \text{ million } \checkmark M$	1M subtracting from total	
	= 5,796 million ✓CA	1CA number in Europe	
		(5)	L4
1.1.3	Number of persons from the three countries given $= (1,1+2,7+4,9)$ million $= 8,7$ million \checkmark A	1A total persons	D
	8.7 million ✓ M	1RT total of refugees	
	% of refugees = $\frac{8.7 \text{ million}}{21.3 \text{ million}} \times 100\%$ = 40.8% $\checkmark CA$	1M % calculation	
	CA	1CA percentage	
	∴The statement is not valid. ✓O	10 verification	
	OR	OR	

Ques	Solution	Explanation	Level
	OR	OR	
	Number of refugees from the three countries	1RT total refugees	
	✓RT ✓M	1M % calculation	
	$= 21.3 \text{ million } \times 54\%$	1A number	
	= 11,5 million \checkmark A		
	Total number at the three countries		
	= (1,1+2,7+4,9) million	1A total persons	
	$= 8.7 \text{ million } \checkmark A$	Tri total persons	
	0,7 11111011	10 deduction	
	∴ The statement is not valid. ✓O	NP for omitting millions	
	The statement is not valid.	(5)	
	/DT /14	(3)	L2
1.2.1	\sqrt{RT} \sqrt{M} % females below 18 yrs = 8.8% + 10.2% + 6.6%	1RT correct three values	P
	70 lenates below 10 yrs = 0,070 + 10,270 + 0,070	1M adding	1
	= 25,6% ✓CA	1CA simplification	
	= 25,070	AO	
		(3)	
		(3)	Ŧ 4
1.2.2	This are group covers the largest range of ages	20 1	L4
1.2.2	This age group covers the largest range of ages.	20 explanation	D
	OR		
	√ √0		
	This age group is a workforce. They might not have work		
	in their own country.		
	OR		
	They are physically fit and able to migrate.		
	OR		
	Adults fleeing to protect their children/ political climate of		
	country. ✓✓O		
	OR Any other valid reason		
	OR Any other valid reason	(2)	
	((0		L2
1.3.1	May ✓✓O	2A correct month	D
		(2)	
			L2
1.3.2	Mean	1M calculating mean	D
	$5580 + 7373 + 10280 + 29810 + 40340 + 43460$ \checkmark M		
	6	1A sum of the number of	
	136 843 ✓A	refugees	
	= 	1CA mean	
	6 - 22 807 16667 (CA	NDD	
	= 22 807,16667 ✓CA	NPR	
	≈ 22 807	(No mode or median	
		calculated correctly full	
		marks)	
		(3)	

Ques	Solution	Explanation	Level
1.3.3	For both years the number of refugees increase from January to June O OR For 2014 the number of refugees increase from January to June and for 2015 the number of refugees increase from January to June O OR For both years the number of refugees increase from January to June O OR	10 both years 10 increase 10 months OR 10 for year 10 increase 10 months OR 10 both years 10 increase substantially	L4 D
	substantially in April and June. ✓O	10 months OR	
	OR Month to month there are an increase form 2014 to 2015 OR OR Compared to 2014, 2015 has more refugees entering Europe per month. OR	10 both years 10 increase substantially 10 months OR 10 both years 10 increase substantially 10 months OR	
	There was a significant increase from March to April in both years	10 both years 10 increase substantially 10 months (3)	
1.4	Budget amount for 2016 = US\$ 5 300 million \times 118,7% $^{\wedge}$ M or (1,187) = US\$ 6 291,1 million $^{\vee}$ CA = US\$ 6 291 100 000 $^{\vee}$ C Factor increase = $\frac{6291100000}{300000}$ or $\frac{6291,1}{0,3}$	1M increase % 1A 118,7% 1CA increased amount 1C value in millions or 1950 budget to 0,3	L3 F
	= 20 970,3333 ✓CA OR	1CA factor NPR	
	Increase from 2015 18,7% × US\$ 5 300 million ✓ M = US\$ 991,1 ✓ A Budget amount for 2016	OR 1M calculating % 1A amount	
	= US\$ 5 300 million + US\$ 991,1 million = US\$ 6 291,1 million ✓ CA = US\$ 6 291 100 000 ✓ C	1CA increase amount 1C value in millions	
	Factor increase = $\frac{6291100000}{300000}$ = 20 970,3333 \checkmark CA	1CA factor NPR (5)	
		[31]	

Copyright reserved

QUEST	TION 2 [40 marks]		
Ques	Solution	Explanation	Level
2.1.1	Density = $\frac{39\ 000}{13,5\ \text{acres}}$ \checkmark SF \checkmark CA = 2 888,88 persons per acre \approx 2 889 persons per acre	1SF substitution of correct values 1CA simplification 1R rounding (3)	L2 M&P
2.1.2	$P = \frac{11393}{39000} \checkmark RT$ $\approx 0.29 \text{ or } 29.21\% \checkmark CA$	1RT reading values 1M probability concept 1CA correct rounded probability AO (3)	L2 P
2.1.3 (a)	\sqrt{RT} \sqrt{M} 15 000 - 14 979 = 21 \sqrt{CA}	1RT values 1M subtracting 1CA number of seats (3)	
2.1.3 (b)	There are provisions made for disabled spectators who don't require seats. OR Some people can be standing. OR	20 reason	L4 M&P
2.1.4 (a)	Staff , line judges, officials, coaches, media personnel. Width of the screen = $\frac{\sqrt[4]{RT}}{5 \text{ m}}$ \checkmark M = 8 m \checkmark A	1RT value 1M dividing 1A width (3)	
2.1.4 (b)	Measured width of screen 6 mm Scale: 6 mm: 8 m ✓ A 6 mm: 8 000 mm ✓ C 1: 1333,33 ✓ CA	1A scale 1C converting 1CA unit scale (3)	L3 M&P
2.2.1	12 ✓✓A	2A correct number (2)	L2 M&P
2.2.2	F ✓✓A	2A correct number (2)	L2 M&P

Ques	Solution	Explanation	Level
			L4
2.2.3	Area of the court = $41 \text{ m} \times 22 \text{ m}$	1A area	M
	$= 902 \text{ m}^2 \checkmark \text{A}$ Seed needed = $902 \text{ m}^2 \times 245 \text{ g/m}^2 \checkmark \text{M}$	1M multiply with appead rate	
	= 220 990 g	1M multiply with spread rate	
	= 220 770 g		
	= 220,99 kg ✓C	1C converting to kg	
	Fescue seed = $\frac{3}{10} \times 220,99 \text{ kg}$ $\checkmark M$	1M working with ratio	
	$ \begin{array}{c} 10 \\ = 66,297 \text{ kg} \checkmark \text{CA} \end{array} $	1CA mass of red fescue seed	
	= 66,297 kg • CA	TCA mass of red lescue seed	
	The statement is not valid. ✓O	10 conclusion	
	OR		
	Area of the court = $41 \text{ m} \times 22 \text{ m}$		
	$= 902 \text{ m}^2 \checkmark \text{A}$	1A area	
	$\frac{3}{3}$ of area of the point $\frac{3}{3}$ $\sqrt{002}$ m^2	1M working with ratio	
	$\frac{3}{10}$ of area of the court $=\frac{3}{10} \times 902 \text{ m}^2$		
	$= 270,6 \text{ m}^2$		
	Fescue seed = $270.6 \text{ m}^2 \times 245 \text{ g/m}^2$	1M multiply with spread rate	
	= 66 297 g ✓CA	1CA mass of red fescue seed	
	= 66,297 kg ✓ C	1C converting to kg	
	The statement is not valid. ✓O	10 conclusion	
	The statement is not vand.	OR	
	OR OR		
	Area = 902 m^2 \checkmark A	1A area	
	Ratio $7:3$ $3 \checkmark M$	1NA daineidaida	
	$\frac{3}{10} \times 245 \text{ g} = 73.5 \text{ g fescue/ m}^2$	1M working with ratio	
	10 ✓M ✓CA	1M multiply with spread rate	
	$73,5g/\text{ m}^2 \times 902 \text{ m}^2 = 66 297g$	1CA mass of seed	
	= 66,297kg ✓C	1C converting to kg	
	Not valid ✓O	10 conclusion	
		(6)	

Ques	Solution	Explanation	Level
2.3.1	Percentage increase = $\frac{£2,50-£1,70}{£1,70} \times 100\% $ \checkmark SF = $47,0588\%$ \checkmark CA	1RT reading values from graph 1SF substitution 1CA simplification	L3 F
	% increase per year = $\frac{47,0588}{21}$ \checkmark A $\approx 2,24 \%$ \checkmark CA	1A dividing by 21 1CA simplification NPR (5)	
2.3.2	Income = $142\ 000 \times £2,50 \checkmark RT$ = £355 000 $\checkmark CA$	1M multiplying 1RT price from graph 1CA income AO (3)	L2 F
2.3.3	The average inflation rate remained unchanged / constant	2A comment	L4 F
	OR The annual inflation rate change for the UK would have been 0%	(if the answer only refers to the price of strawberries max 1 mark) (2)	
		[40]	

QUES	TION 3 [36 marks]		
Ques	Solution	Explanation	Level
3.1.1	$\sqrt[4]{RT}$ 35°C − (−3°C) = 35°C + 3°C = 38°C $\sqrt[4]{CA}$	1RT reading values from table 1CA difference AO (2)	M L2
3.1.2	√M (A	, ,	D
	Range = $29^{\circ}\text{C} - 9^{\circ}\text{C} = 20^{\circ}\text{C}$	1M concept of range	L2
	Month: September ✓A	1A range in °C	
	Wohan. September VA	1A September	
		(3)	
212	Mean and extreme maximums and n	ninimums	D
3.1.3	50		L2
	•••••		
	40		
	© 30	··•• Extreme	
	20	Max	
	20	Mean Max	
	on 10	- Mean	
		✓ ∆ Min	
	0 A	Extreme Min	
	A	✓ CA WIIII	
	-10 A		
	Jan Feb Mar Apr June July Aug Sept	Nov Dec	
		Z	
	Months		
	$1A \times 6$ for each two points plotted correctly		
	1CA joining the points	,	
		(7) D
3.1.4	Inner band $\checkmark \checkmark A$	2A band	L4
	OR	OR	
	✓A ✓A 25 to 75 perceptile, hand	1 A interpreting the starting	
	25 to 75 percentile band.	1A interpreting the starting point of the percentile band	
	OR	1A end point of percentile	
		band	
	Above the mean but below the 75 th percentile	(accept 50 to 75 percentile	
		band)	
		(2)	

Copyright reserved

Ques	Solution	Explanation	
3.1.5	$^{\circ}$ F = $(^{\circ}$ C $\times \frac{9}{5}) + 32$		M L3
	119,1°F = (°C × $\frac{9}{5}$) + 32 ✓SF	1SF substituting values	
	$({}^{\circ}C \times \frac{9}{5}) = 119,1 - 32 \checkmark_{S}$	1S simplification	
	$^{\circ}$ C = 87,1 $\div \frac{9}{5}$ \checkmark S	1S simplification	
	$= 48,3888$ $\approx 48,4 ^{\circ}\text{C}$	1CA Celsius value (4)	
3.2.1	✓ ✓ RT North	2RT modal wind direction. (2)	D L3
3.2.2	$P_{\text{(westerly)}} = 16\% + 11\% + 9\% $ $\checkmark RT$ = 36% $\checkmark CA$	1RT reading all W values 1CA probability AO (2)	P L2
3.2.3	The percentages do not add up to 100%.	2O explanation	D L4
	OR		
	Too many sectors needed ✓✓O	(2)	

Ques	Solution	Explanation	T&L
3.3.1	Accommodation per person = $\frac{R850}{3}$ \checkmark A = $R283,33$ \checkmark CA	1A divide by 3 1CA accommodation per person in R	F L3
	Kz 100 000 = R9 173,05		
	Amount Kwanza = $\frac{R283,33}{R9173,05} \times Kz100000 \checkmark M$ $\approx Kz 3 088,76 \checkmark CA$	1A multiply by 100 000 1M divide by 9 173,05	
	~ KZ 3 088,70 V CA	1CA amount per person	
	OR	OR	
	R9 173,05 = Kz 100 000 R1 = $\frac{100 000}{9173,05}$ \checkmark M = Kz 10,9014995 \therefore R850 = Kz 10, 9014995 \times 850 \checkmark A \approx Kz 9 266,27 \checkmark CA Cost per person = $\frac{9266,27}{3}$ \checkmark A \approx Kz 3 088,76 \checkmark CA	1M divide by 9 173,05 1A multiply by 850 1CA total amount 1A divide by 3 1CA accommodation per person in Kz (using R850 per person max 5 marks. Multiplying R850 by 3 max 4 marks) (5)	
3.3.2	\$1 = Kz 169,27344	1M multiplying 1A Disposable salary in Kz 1M percentage calculation 1CA percentage	F L4
	South Africa Rent as a % of income = $\frac{4430}{16500} \times 100\%$ \checkmark M = 26,85% \checkmark CA VO Not valid .It is much cheaper in SA but not double.	1M percentage calculation 1CA percentage 10 conclusion (7)	

Copyright reserved

QUEST	ION 4 [43 marks]		
Ques	Solution	Explanation	Levels
4.1.1	Volumetric mass = $\frac{43 \text{ cm} \times 30,5 \text{ cm} \times 14,5 \text{ cm}}{5000} \checkmark \text{C}$ $= 3.8 \text{ kg} \checkmark \text{CA}$	1SF substitution mm/cm 1C conversion to cm 1RT correct mass factor 1CA volumetric mass	L2 M
	OR	AO	
	Volume (in mm ³) = $430 \times 305 \times 145$ \checkmark SF = $19\ 016\ 750$ Volumetric mass = $\frac{19\ 016\ 750}{5\ 000}$ \checkmark RT = $3\ 803.35g \div 1\ 000$ \checkmark C = $3.8\ kg$ \checkmark CA	OR 1SF substitution in volume formula 1RT correct mass factor 1C conversion 1CA volumetric mass	
		(4)	
4.1.2	Volumetric mass = $\frac{\text{volume of the parcel in cm}^3}{\text{mass factor}}$ $2 \text{ kg} = \frac{20 \text{cm} \times 25 \text{cm} \times 15 \text{cm}}{\text{mass factor}} \checkmark \text{SF}$ Mass factor = $\frac{7500 \text{ cm}^3}{2 \text{ kg}} \checkmark \text{S}$ = 3 750 cm ³ /kg $\checkmark \text{S}$ $\approx 4 000 \text{ cm}^3/\text{kg} \checkmark \text{R}$	1SF substitution 1S volume 1S change formula 1S simplification 1R rounding	L3 M
	OR	OR	
	Volumetric mass (using 5000) = $\frac{20 \text{ cm} \times 25 \text{ cm} \times 15 \text{ cm}}{5000}$ $\checkmark \text{SF}$	1SF substitution	
	= 1,5kg ✓S	1S simplification	
	Volumetric mass (using 4000) = $\frac{20 \text{ cm} \times 25 \text{ cm} \times 15 \text{ cm}}{4000} \checkmark \text{SF}$	1SF substitution	
	= 1,875kg	1S simplification	
	Hence 4000cm³/kg ✓O	10 conclusion (5)	

Ques	Solution	Explanation	Level
4.1.3	Surface area of a rectangular-based box $ \checkmark A \qquad \checkmark SF $ = 2(575 mm × 375 mm + 575 mm × 400 mm + 375 mm × 400 mm) $ = 1 191 250 \text{ mm}^2 $	1SF substitute into formula 1A correct values 1CA simplification	L4 M
	Surface area of a square based box $= 2 \times 410 \text{ mm } (2 \times 600 \text{ mm} + 410 \text{ mm})$ $= 1 320 200 \text{ mm}^2 \qquad \checkmark \text{CA}$	1SF substitution 1A using the squared side (410) 1CA simplification	
	The statement is not valid. ✓O	10 conclusion	
	Surface area of a square based box $ \checkmark SF \qquad \checkmark A $ $= 4 \times 410 \text{ mm} \times 600 \text{ mm} + 2 \times (410 \text{ mm})^2$ $= 1 320 200 \text{ mm}^2 \qquad \checkmark CA$ The statement is not valid. $\checkmark O$		
4.2.1	These places are far from Mbombela. ✓✓O	2O reason	L4 M&P
	OR There might not be many parcels to deliver to those places. OR		
	From Mbombela parcels might go to a central depot to be delivered from there.	(2)	

Ques	Solution	Explanation	Level
4.2.2	Package to Graskop: Less than 30 kg @ R70,00 \checkmark A	1A Graskop R70	L3 F
(a)	Package to Klerksdorp: 18 kg VA 15 kg + 1 excess of 5 kg VA CA Delivery cost R106,00 + R15,00 = R121,00 Package to Port Alfred: 18 kg	1A splitting mass to Klerksdorp 1A R106 1CA cost	
	\sqrt{A} 10 kg + 2 excess of 5kg	1A splitting mass to PA	
	Delivery cost $\begin{array}{c} \checkmark A \\ R160,00 + 2 \times R15 = R190 \end{array}$	1A R160 1CA cost	
	Total cost = $R70 + R121 + R190 = R381$ $\checkmark M$ $VAT = R381 \times 14\%$ $\checkmark M$	1M adding 1M VAT	
	= R53,34	1CA total cost incl. VAT (For Port Alfred max 3	
	Total cost including VAT = R434,34 ✓CA	marks if cost is calculated using R106 - Cost R121 or R117 - Cost 132)	
	OR	OR	
	Prices with VAT Local: R70 ×114% = R79,80 Klerksdorp: R106 ×114% = R120,84 ✓ M	1M adding VAT to costs	
	Shaded areas:R160 \times 114% = R182,40 Excess label: R15 \times 114% = R17,10	1A Graskop cost Klerksdorp:	
	To Graskop cost = R79,80 ✓A	1A basic cost 1A one excess label 1CA cost	
	To Klerksdorp cost = $R120,84 + R17,10 = R137,94$	Port Alfred 1A basic cost	
	$\checkmark A \qquad \checkmark A \qquad \checkmark CA$ To Port Alfred cost = R182,40 + 2 × R17,10 = R216,60	1A two excess labels 1CA cost	
	Total cost = $R79,80 + R137,94 + R216,60 \checkmark M$ = $R434,34 \checkmark CA$	1M adding 1CA total cost incl. VAT (10)	

Ques	Solution	Explanation	Level
4.2.2		1A time 30 April	L4
(b)	30 April from 14:50 to 24:00 is 9 hours 10 min ✓A		M
	1 May is 24 hours 2 May from 00:00 to 8:15 is 8 hours 15 min	1A time 1 and 2 May	
		1CA adding time	
	Total elapsed time = 41 hours 25 min ✓ CA		
	This is within the 48 hour service. \checkmark O	10 opinion based on CA from 4.2.2 (a)	
	OR	OR	
	30 April from 14:50 To 1 May 14:50 (24 hours / 1st day) To 2 May 14:50 (48 hours / 2nd day) ✓ A	1A 1st day 1A 2nd day	
	But 2 May 8:15 is before 48 hours. ✓A It is within 48 hours ✓O	1A conclusion 1O conclusion (4)	
4.2.3 (a)	Box size A:	1M dividing	L3 F
	Number of boxes = $\frac{650}{7} = 92,857$ \checkmark M $\approx 93 $	1R rounding up	
	Mass of box = $7 \times 2 \text{ kg} = 14 \text{ kg}$ $\checkmark \text{A}$ $\text{Cost} = \text{R}117,00 \times 93$	1A rate to George	
	= R10 881 ✓CA	1CA cost	
		(4)	

Ques	Solution	Explanation	Level
4.2.3 (b)	Box size B: Number of boxes = $\frac{650}{15} = 43,333$ \checkmark MA	1MA dividing	LA F
	43 boxes packed with 15 parts, mass 30 kg each ✓R Number of parts left = 650 - 43 × 15 = 5 ✓CA Mass of the parts = 5 × 2 kg = 10 kg 1 box packed with the remaining 5 parts, mass 10 kg	1R rounding down 1CA extra smaller box	
	Cost per 30 kg box = R117 + 3 × R15 = R162 $Cost = R162 \times 43 + R117 \qquad \checkmark M$ = R7 083 \checkmark CA	1A cost per box 1M multiply and adding 1CA cost	
	Box size B is more economical. ✓O OR (for the first part) Mass of all the parts = 650 x 2kg = 1 300 kg Mass of a box with 15 parts = 30 kg	10 advice (7)	
	Number of boxes needed = $\frac{1300}{30}$ = 43,33	[43] TOTAL	150