

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2009(1)

MEMORANDUM

Marks: 150

This memorandum consists of 25 pages.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.1.1 x(x-1) = 30 $x^2 - x = 30$ $x^2 - x - 30 = 0$ (x-6)(x+5) = 0x = 6 or x = -5

If implied as equation: No penalty

If there is no equals sign or the equation is not = 0: No penalty

If x = 6 is answer by inspection: 1/3

Both correct answers no calculation: 1/3

✓ simplification (multiplying out brackets)

✓ factors

✓ both answers

(3)

OR

$$x(x-1) = 30$$

$$x^{2} - x = 30$$

$$x^{2} - x - 30 = 0$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4(1)(-30)}}{2(1)}$$

$$= \frac{1 \pm \sqrt{121}}{2}$$

$$= \frac{1 \pm 11}{2}$$

$$x = 6 \text{ or } x = -5$$

✓ simplification (multiplying out brackets)

✓ substitution into formula

✓ both answers (ca) (3)

1.1.2 $3x^{2} - 5x + 1 = 0$ $a = 3 \quad b = -5 \quad c = 1$ $x = \frac{-(-5) \pm \sqrt{25 - 4(3)(1)}}{2(3)}$ $= \frac{5 \pm \sqrt{13}}{6}$ $x = 1,4 \quad \text{or} \quad x = 0,2$

NOTE:

Penalty 1 for incorrect rounding off in either answer

Using calculator incorrectly: Max: 2/4 Answers will be x = 5.6 or 4.4

Incorrect formula: max 1 / 4

If $x = \frac{5 \pm \sqrt{37}}{6}$ then CA applies x = 1.8 and -0.2: Max 3 / 4

Correct answer only: 2 / 4

If factorising: 0/4

If $x = \frac{5 \pm \sqrt{13}}{6}$ only, then 2/4 If $x = 5 \pm \frac{\sqrt{13}}{6}$ only, then 1/4 ✓ substitution into correct formula

 $\checkmark \sqrt{13}$

 \checkmark values of x (CA with formula)

(4)

OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.1.2 contd	$3x^{2} - 5x + 1 = 0$ $x^{2} - \frac{5}{3}x = -\frac{1}{3}$ $x^{2} - \frac{5}{3}x + \frac{25}{36} = -\frac{1}{3} + \frac{25}{36}$ $\left(x - \frac{5}{6}\right)^{2} = \frac{13}{36}$ $x - \frac{5}{6} = \frac{\pm\sqrt{13}}{6}$ $x = \frac{5 \pm\sqrt{13}}{6}$ $x = 1,4 \text{or} x = 0,2$	✓ correct method of completing the square ✓ $\sqrt{13}$ ✓ $\sqrt{13}$ ✓ $\sqrt{13}$ (A with formula)
1.1.3	$-9x^2 + 15x - 4 < 0$	(4)
1.1.3	$9x^{2}-15x+4>0$ $(3x-4)(3x-1)>0$ $+ 0 - 0 + OR$ $\frac{1}{3} \frac{4}{3}$ $x < \frac{1}{3} \text{ or } x > \frac{4}{3}$ Answer can be given as: $x \in \left(-\infty; \frac{1}{3}\right) \cup \left(\frac{4}{3}; \infty\right)$	✓ factors ✓ correct inequality sign
	OR $-9x^2 + 15x - 4 < 0$ (-3x + 4)(3x - 1) < 0 $x < \frac{1}{3}$ or $x > \frac{4}{3}$	✓ factors ✓ correct inequality sign $ \sqrt{\frac{1}{3}; \frac{4}{3}} $
	NOTE:	✓ answer
		(4)
	If stop at factorisation: 2/4	
	If incorrect factors: CA applies 3 / 4	
	If answer: $\frac{1}{3} < x < \frac{4}{3}$ then 3/4	

Copyright Leserveu

If $x < \frac{1}{3}$ AND $x > \frac{4}{3}$ then 3/4

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.2	2 2 2 7 0		
1.2	Substitute $x = y + 3$ in $x^2 - xy - 2y^2 - 7 = 0$ $(y+3)^2 - y(y+3) - 2y^2 - 7 = 0$		✓ substitution
	$\begin{cases} (y+3) - y(y+3) - 2y - 7 = 0 \\ y^2 + 6y + 9 - y^2 - 3y - 2y^2 - 7 = 0 \end{cases}$		
			✓ standard form
	$2y^2 - 3y - 2 = 0$		✓ factors
	(2y+1)(y-2) = 0		
	$y = -\frac{1}{2}$ or $y = 2$		✓ both <i>y</i> -values
	. 1	NOTE: If the equation is changed	✓ both <i>x</i> -values
	$x = 2\frac{1}{2} \text{ or } x = 5$	to a linear equation, then max 2 / 5	(5)
	OR	There are no penalties for not putting $= 0$.	
	y = x - 3	not putting – 0.	(1
	$x^{2} - x(x-3) - 2(x-3)^{2} - 7 = 0$		✓ substitution
	$x^2 - x^2 + 3x - 2(x^2 - 6x + 9) - 7 = 0$		
	$0 = 2x^2 - 15x + 25$		✓ standard form ✓ factors
	0 = (2x - 5)(x - 5)		
	$x = 2\frac{1}{2}$ or $x = 5$		✓ both <i>x</i> -values
	_		✓ both <i>y</i> -values
	$y = -\frac{1}{2}$ or $y = 2$		(5)
	2		
1.3	2009		
1.5	10		✓ convert to indices
	$10^{\frac{2011}{2}} - 10^{\frac{2007}{2}}$		
	2009		
	$=\frac{10^{-2}}{2007}$		✓ common factor
	$10^{-2} (100-1)$		
	$=\frac{10}{10}$		✓ answer
	99		(3)
	OR		

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.3	$10^{1004}\sqrt{10}$	
contd	$\frac{10^{-100}\sqrt{10}}{10^{1005}\sqrt{10}-10^{1003}\sqrt{10}}$	✓ convert to indices
	$=\frac{10^{1004}\sqrt{10}}{\sqrt{10}(10^{1005}-10^{1003})}$	
		✓ common factor
	$=\frac{10^{1004}}{10^{1003}(100-1)}$	• • • • • • • • • • • • • • • • • • • •
	$10^{1003}(100-1)$	
	$=\frac{10}{99}$	✓ answer
	99	(3)
	OR	
		✓ convert to indices
	$\sqrt{10^{2009}}$	
	$\sqrt{10^{2009}.10^2} - \sqrt{10^{2009}.10^{-2}}$	
	$\sqrt{10^{2009}}$	✓ common factor
	$=\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009}}(10-10^{-1})}$	· common factor
	$=\frac{1}{10-\frac{1}{10}}$	✓ answer
	$10 - \frac{1}{10}$	(3)
	$=\frac{1}{90}$	
		
	10	
	$=\frac{10}{99}$	
	99	
	OR	
	$\sqrt{10^{2000}}\sqrt{10^9}$	
	$\frac{\sqrt{10^{2000}.10^{11}} - \sqrt{10^{2000}.10^7}}{\sqrt{10^{2000}.10^{11}} - \sqrt{10^{2000}.10^7}}$	✓ convert to indices
	$=\frac{\sqrt{10^{2000}}\sqrt{10^9}}{\sqrt{10^{2000}}\left(\sqrt{10^{11}}-\sqrt{10^7}\right)}$	
		✓ common factor
	$=\frac{\sqrt{10^9}}{\sqrt{10^{11}}-\sqrt{10^7}}$	common factor
	$10\sqrt{10^7}$	✓ answer
	$=\frac{10\sqrt{10^7}}{100\sqrt{10^7}-\sqrt{10^7}}$	(3)
	$=\frac{10\sqrt{10^7}}{\sqrt{10^7}(100-1)}$	
	$=\frac{10}{99}$	
	OR	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	7.02007	
	$ \frac{\sqrt{10^{2007}}.\sqrt{10^2}}{\sqrt{10^{2007}.10^4} - \sqrt{10^{2007}}} $ $ 10\sqrt{10^{2007}} $	✓ convert to indices
	$= \frac{10\sqrt{10^{2007}}}{\sqrt{10^{2007}}(\sqrt{10^4} - 1)}$ $= \frac{10}{100 - 1}$	✓ common factor
	$=\frac{10}{99}$	✓ answer (3)
	OR	
	Let $x = 2009$ $\frac{\sqrt{10^{x}}}{\sqrt{10^{x+2}} - \sqrt{10^{x-2}}}$	
	$=\frac{10^{\frac{x}{2}}}{10^{\frac{x}{2}}.10-10^{\frac{x}{2}}.10^{-1}}$	✓ convert to indices
	$=\frac{10^{\frac{x}{2}}}{10^{\frac{x}{2}}(10-10^{-1})}$	✓ common factor
	$=\frac{1}{10-\frac{1}{10}}$	✓ answer (3)
	$=\frac{1}{\frac{99}{10}}$	
	$=\frac{10}{20}$	
1.4	$ \frac{99}{\left(1 + \sqrt{2x^2}\right)^2 - \sqrt{8x^2}} \\ = 1 + 2\sqrt{2x^2} + 2x^2 - \sqrt{4}\sqrt{2x^2} $	✓ expansion / multiplication $1+2\sqrt{2x^2}+2x^2$
	$=1+2\sqrt{2x^2}+2x^2-2\sqrt{2x^2}$	$ 1 + 2\sqrt{2x} + 2x $ $\sqrt{8x^2} = 2\sqrt{2x^2}$
	$=1+2x^2$	✓ answer (3)
	OR	✓ expansion /
	$\left(1+\sqrt{2x^2}\right)^2-\sqrt{8x^2}$	multiplication $1 + \sqrt{8x^2 + 2x^2}$
	$=1+\sqrt{8x^2}+2x^2-\sqrt{8x^2}$	$\begin{vmatrix} 1 + \sqrt{8x^2} + 2x^2 \\ \sqrt{8x^2} = 2\sqrt{2x^2} \end{vmatrix}$
	$=1+2\sqrt{2x^2}+2x^2-2\sqrt{2x^2}$	✓ answer
	$=1+2x^2$	(3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

contd

Note: $\sqrt{x^2} = x$ if x > 0 and -x if x < 0

OR $(1 + \sqrt{2x^2})^2 - \sqrt{8x^2}$ $= (1 + (2x^2)^{\frac{1}{2}})^2 - 8^{\frac{1}{2}}x$ $= 1 + 2 \cdot (2x^2)^{\frac{1}{2}} + 2x^2 - 8^{\frac{1}{2}}x$ $= 1 + 2 \cdot 2^{\frac{1}{2}}x + 2x^2 - 8^{\frac{1}{2}}x$ $= 1 + 8^{\frac{1}{2}}x + 2x^2 - 8^{\frac{1}{2}}x$ $= 1 + 2x^2$

Note: $\sqrt{x^2} = x$ if x > 0 and -x if x < 0

OR

Let
$$2x^2 = y$$

 $(1 + \sqrt{2x^2})^2 - \sqrt{8x^2}$
 $= (1 + \sqrt{y})^2 - \sqrt{4y}$
 $= 1 + 2\sqrt{y} + y - 2\sqrt{y}$
 $= 1 + y$
 $= 1 + 2x^2$

✓ expansion / multiplication

✓ simplification

✓ answer

(3)

✓ expansion / multiplication

 $1+2.(2x^2)^{\frac{1}{2}}+2x^2$

✓simplification

✓ answer

(3)

[22]

Mathematics/P1 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 2

2.1.1	$T_n = 4n + 1$		✓✓✓ Answer	
	OR	NOTE: If $T_n = 5 + (n-1)(4)$ then full marks	only	(3)
	$T_n = 5 + (n-1)(4)$ $= 4n + 1$	then run marks	✓ $d = 4$ ✓ substitution ✓ answer	(2)
2.1.2	$T_n = 5(25)^{n-1}$		$\checkmark r = 25$ $\checkmark \text{ answer}$	(2)
2.2	The sequence is 1; $1 + d$; $1 + 2d$ and 1; r ; r^2 ; r^3 ;	; 1 + 3 <i>d</i> ; (AP) (GP)		
	$\therefore 1 + d = r \text{and} d = r - 1$ But $1 + 2d = r^2$	$r^2 = 1 + 2d$	$\checkmark 1+d=r$ $\checkmark 1+2d=r^2$	
	, and the second	$(1)^2 = 1 + 2d$		
		$d^2 = 1 + 2d$ $d^2 = 0$	$\checkmark r = 1$ $\checkmark d = 0$	
	r = 1	d = 0 $r = 1$	✓reason	
	∴ $d = 0$ ∴ the one and only such sequence Nomsa is correct.		reason	(5)
	OR $T_{1} = 1$ Let the sequence be $1; a; b;$ Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^{2} = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^{2}$ $0 = a^{2} - 2a + 1$	 If: Sequence is 1; 1; 1; 1; 1; 1; Then d = 0 r = 1 Therefore only one sequence exists. Nomsa is correct Max 3 / 5 If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 	✓ Setting up sequence ✓ $a^2 = b$ ✓ $b = 2a - 1$ ✓ $a = 1$	
	$0 = (a-1)^2$ $a = 1$	then $2/5$ If $ar^{n-1} = a + (n-1)d$ only	$\checkmark b = 1$	(5)
	b=1 Sequence is 1; 1; 1; Nomsa is correct	then 1 / 5		[10]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

3.1	$-1 + 2 + 5 + \dots$		✓ all three terms	
	OR			(1)
	-1;2;5			
3.2	$S_n = -1 + 2 + 5 + 8 + $ to 100 terms			
	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$		\checkmark formula \checkmark $n = 100$	
	$S_{100} = \frac{100}{2} [2(-1) + (100 - 1)(3)]$	Answer only: 4 / 4	\checkmark n = 100 \checkmark substitution	
	=50[-2+297]		✓ answer	
	=14 750 OR			(4)
	$S_n = -1 + 2 + 5 + 8 + $ to 100 terms			[5]
	$T_{100} = 3(100) - 4$			
	= 296			
	$S_{n} = \frac{n}{2} [T_{1} + T_{100}]$			
	$S_{100} = \frac{100}{2} \left[-1 + 296 \right]$			
	= 50[295]	Apply consistent accuracy.		
	=14750	This is the answer if series is $2+5+8+$		
	NOTE:	$S_n = 2 + 5 + 8 + $ to 100 terms		
	If $S_n = -1 + 2 + 5 + 8 +$ to 99 terms	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$	$S_{100} = \frac{100}{2} [2(2) + (100 - 1)(3)]$		
	$S_{99} = \frac{99}{2} [2(-1) + (99 - 1)(3)]$	=50[4+297]		
	$=\frac{99}{2}[-2+294]$	=15050		
	=14454	Then 4 / 4		
	Then 3 / 4			
			1	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

4.1	The first differences are $1; -1; -3; -5; \dots$	✓ pattern
	These form a linear pattern $T_n = 1 + (n-1)(-2)$ $= 3 - 2n$ $\mathbf{OR} \ T_n = -2n + 3$	✓ d = -2 ✓ answer (3)
	ANSWER ONLY: Full marks	
4.2	Between the 35 th and 36 th terms of the quadratic sequence lies the 35 th first difference 35 th first difference = $3 - 2(35)$ = -67 OR From the quadratic sequence: $P_{36} = -1158$ and $P_{35} = -1091$ 35 th first difference = $-1158 - (-1091)$ = -67 If substitute and get $T_{35} = -2(35) + 3 = -67$ and $T_{36} = -2(36) + 3 = -69$, leading to the answer -2 then $1/2$	✓ substitution of 35 into $T_n = -2n + 3$ ✓ answer (2) ✓ $P_{36} = -1158$ and $P_{35} = -1091$ ✓ answer (2)
4.3	Second difference of terms is -2 . $P_n = an^2 + bn + c$ $a = -1$. $3a + b = 1$ $-3 + b = 1$ $b = 4$ $a + b + c = -3$ $-1 + 4 + c = -3$ $c = -6$ $P_n = -n^2 + 4n - 6$ If the general term has been worked out correctly in 4.2 and not redone in 4.3 but answer just written down then $4/4$	✓ a = -1 ✓ substitution $ ✓ b = 4 $ ✓ $c = -6$ (4)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

contd

Second difference of terms is -2.

$$P_n = an^2 + bn + c$$

$$a = -1.$$

$$P_0 = -6 = c$$

$$P_n = -n^2 + bn - 6$$

$$-3 = -(1)^2 + (1)b - 6$$

$$b = 4$$

$$P_n = -n^2 + 4n - 6$$

OR

$$P_{n} = \frac{n-1}{2} \left[2(first\ first\ difference) + (n-2)(second\ difference) \right] + P_{1}$$

$$P_{n} = \frac{n-1}{2} \left[2(1) + (n-2)(-2) \right] - 3$$

$$P_{n} = n-1 - (n-2)(n-1) - 3$$

$$P_{n} = n-1 - n^{2} + 3n - 2 - 3$$

$$P_{n} = -n^{2} + 4n - 6$$

OR

$$P_n = (n-1)P_2 - (n-2)P_1 + 2nd \ difference \frac{(n-1)(n-2)}{2}$$

$$P_n = (n-1)(-2) - (n-2)(-3) - 2\frac{(n-1)(n-2)}{2}$$

$$P_n = -2n + 2 + 3n - 6 - n^2 + 3n - 2$$

$$P_n = -n^2 + 4n - 6$$

OR

$$P_n = \frac{(n-2)(n-3)T_1 - 2(n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2}$$

$$P_n = \frac{(n^2 - 5n + 6)(-3) - 2(n^2 - 4n + 3)(-2) + (n^2 - 3n + 2)(-3)}{2}$$

$$P_n = \frac{-3n^2 + 15n - 18 + 4n^2 - 16n + 12 - 3n^2 + 9n - 6}{2}$$

$$P_n = -n^2 + 4n - 6$$

OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.0			
4.3 contd	$P_2 - P_1 = T_1$		
Conta	$P_3 - P_2 = T_2$		
	$P_4 - P_3 = T_3$		
	$P_{n} - P_{n-1} = T_{n-1}$		
	$P_n - P_1 = T_1 + T_2 + \dots + T_{n-1}$		
	$P_n - P_1 = \frac{n-1}{2} [2(1) + (n-2)(-2)]$		
	$P_n - (-3) = (n-1)(3-n)$		
	$P_n = -n^2 + 4n - 6$		
4.4	Maximum value of T_n is $\frac{4(-1)(-6)-4^2}{4(-1)} = -2$	✓ max value – 2	
	The maximum value is negative and hence the sequence can not have any positive terms as the function is maximum valued	✓ explanation	(2)
	OR		
	$-n^2 + 4n - 6$	✓ max value – 2	
	$=-(n-2)^2+4-6$	✓ explanation	
	$=-(n-2)^2-2$		(2)
	The function has a maximum-value of -2 and therefore the pattern will never have positive values. OR		
	$T_n = -n^2 + 4n - 6$		
	$\frac{d}{dn}(T_n) = -2n + 4$	✓ max value – 2 ✓ explanation	
	0 = -2n + 4	• explanation	(2)
	n = 2		` /
	$T_2 = -(2)^2 + 4(2) - 6$		
	=-2		
	The function has a maximum-value of -2 and therefore the pattern will never have positive values.		
	OR As the sequence decreases from the second term onwards and the second term is negative, the sequence will never have a positive term.	✓✓ answer	
	OR		(2)
	$T_n = -n^2 + 4n - 6$		
	$\frac{d}{dn}(T_n) = -2n + 4$		
	$\frac{d}{dn}(T_n) < 0$ for $n > 2$ and $T_2 < 0$ so the sequence decreases and stays	✓✓ answer	(2)
	negative		[11]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	TION		150								1
5.1		First year: 150 Second year: $150 + 18 = 168$									
	Third year: $168 + \frac{8}{9}(18) = 184$										
			$\left(\frac{8}{9}\right)^{n-2}$								✓ general terms
	17 th y	ear gro	wth is 18	$8\left(\frac{8}{9}\right)^{17-2}$	= 3,08 0	em					✓ answer
		Yr 1	Yr 2	Yr 3	Yr 4	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	(2)
	Ht	150	168	184	198,2	210,84	222,07	232,06	240,94	248,83	
	Inc		18	16	14,2	12,64	11,23	9,99	8,88	7,89	
		Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15	Yr 16	Yr 17		
	Ht Inc	255,84	262,08	267,62	272,55	276,93	280,82	284,28	287,36		
5.2		7,01	6,24	5,54	4,93	4,38	3,89	3,46	3,08		
3.2			10 years								
	$= 150 + \frac{18\left(1 - \left(\frac{8}{9}\right)^9\right)}{1 - \frac{8}{9}}$ $= 150 + 105,8768146 \dots$ $= 255,88 \text{ cm}$ OR NOTE: By writing out 9 terms and adding to 150 and answer correct, full marks Answer only: 2 / 3								✓ $n = 9$ ✓ substitution into sum formula ✓ answer		
	$= 150 + \frac{18\left(\frac{8}{9}\right)^9 - 1}{\frac{8}{9} - 1}$ $= 150 + 105,8768146 \dots$ $= 255,88 \text{ cm}$									(3)	
5.3	Max	height	= 150 +	sum to	infinity						✓ statement
	Max height = $150 + \text{sum to infinity}$ = $150 + \frac{18}{1 - \frac{8}{9}}$ = $150 \text{ cm} + 162 \text{ cm}$ = 312 cm The tree will never reach a height of more than 312 cm.								✓ substitution into the sum to infinity formula ✓ max height (3)		
					-						[8]

NOTE:

If a candidate answers in 5.1 that the growth is $18\left(\frac{8}{9}\right)^{n-1} = 18\left(\frac{8}{9}\right)^{16} = 2,73$ cm then 1/2

The answer for 5.2 as continued accuracy uses n = 10, Height after 10 years

$$=150 + \frac{18\left(1 - \left(\frac{8}{9}\right)^{10}\right)}{1 - \frac{8}{9}} = 150 + 112,11 \dots = 262,11 \text{ cm}$$

This is awarded 3/3 as consistent accuracy

þr

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

<i>c</i> 1	1 1	
6.1	$\frac{1}{2}x^2 = -\frac{1}{x+1} + 1$ $x^2(x+1) = -2 + 2(x+1)$	✓ equating ✓ multiplication by LCD
	$x^{3} + x^{2} = -2 + 2x + 2$ $x^{3} + x^{2} - 2x = 0$ $x(x^{2} + x - 2) = 0$ $x(x + 2)(x - 1) = 0$	✓ standard form ✓ common factor ✓ factorisation of quadratic
	x = 0 or $x = -2$ or $x = 1y = 0 or y = \frac{1}{2}(-2)^2 or y = \frac{1}{2}(1)^2$	✓ y-answer answer P(-2; 2)
	$y = 2$ or $y = \frac{1}{2}$ $P(-2; 2)$	answer $Q\left(1; \frac{1}{2}\right)$ (6)
	$Q\left(1;\frac{1}{2}\right)$	(0)
	OR	
	$\frac{1}{2}(-2)^2 = 2$: $(-2; 2)$ lies on $f(x) = \frac{1}{2}x^2$	✓ substitution
	$-\frac{1}{(-2)+1}+1=2 \qquad \therefore \ (-2;2) \text{ lies on } g(x)=-\frac{1}{x+1}+1$	✓ substitution
	\therefore (-2; 2) is one of the points P, O or Q. From the graph it is P	\checkmark P lies on f and g
	$\frac{1}{2}(1)^2 = \frac{1}{2} \qquad \therefore (-2; 2) \text{ lies on } f(x) = \frac{1}{2}x^2 \therefore \left(1; \frac{1}{2}\right) \text{ is one of the}$	✓ substitution ✓ substitution
	points P, O or Q. From the graph it is Q $-\frac{1}{(1)+1}+1=\frac{1}{2} \therefore \text{ Q lies on } g(x)=-\frac{1}{x+1}+1$	
	$\therefore \left(1; \frac{1}{2}\right) $ is one of the points P, O or Q. From the graph it is Q	\checkmark Q lies on f and g
		(6)
6.2	For $m > 0$, $m = 1$ the equation of the axis of symmetry is $y = x + c$. 1 = (-1) + c	✓ gradient $m = 1$
	c=2	
	Therefore the equation is $y = h(x) = x + 2$.	$\checkmark c = 2 \tag{2}$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

6.3	The equation of the inverse	of h is	
	x = y + 2	Answer only: Full marks	✓ interchange x and y
	$\therefore y = x - 2$	Answer only. Full marks	✓ answer
6.4	1 -1 + x +	·1 x	(2) ✓ simplification of
	$g(x) = -\frac{1}{x+1} + 1 = \frac{-1+x+1}{x+1}$	$\frac{1}{x} = \frac{x}{x+1}$	g(x)
	1		
	$LHS = \frac{x}{x+1} + \frac{{x}}{\frac{1}{x+1}}$	$RHS = \left(\frac{-x}{1-x}\right)\left(\frac{x-1}{(x-1)+1}\right)$	✓ simplification of LHS
	x		LIID
	$=\frac{x}{x+1}+\frac{1}{x+1}$	$=\frac{(1-x)x}{(1-x)x}$	✓ simplification of
		=1	RHS
	$=\frac{x+1}{x+1}$	•	(3)
	x+1	NOTE:	(=)
	-1	If substitute a value of <i>x</i>	
	LHS = RHS	and prove it, then 0/3	
	OR		
			✓ 2 substitutions
	LHS = $g(x) + g\left(\frac{1}{x}\right)$	RHS = g(-x).g(x-1)	correct.
	()	$=\left(-\frac{1}{-x+1}+1\right)\left(-\frac{1}{x-1+1}+1\right)$	NOTE: not just
	$= -\frac{1}{x+1} + 1 - \frac{1}{\frac{1}{x+1}} + 1$		rewriting $g(x)$ again
	$\frac{x+1}{x}+1$	$=\left(\frac{-1+1-x}{1-x}\right)\left(\frac{-1+x}{x}\right)$	
	1 x		✓ simplification of
	$=-\frac{1}{x+1}+2-\frac{x}{1+x}$	$=\left(\frac{-x}{1-x}\right)\left(\frac{x-1}{x}\right)$	LHS
	1+x	(1 N)(N)	✓ simplification of
	$=-\frac{1+x}{1+x}+2$	$=\left(\frac{x}{x-1}\right)\left(\frac{x-1}{x}\right)$	RHS
	=-1+2	(x-1)(x)	(2)
	=1	=1	(3)
	LHS = RHS		[13]

Mathematics/P1

- DoE/November 2009(1)
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 7

7.1	$y \in [-3;3]$	✓ answer			
			NOTE:		(1)
	OR		Notation incorrect : 0 / 1		
	$-3 \le y \le 3$				
	OR				
	y can be any value from	m-3 to 3			
7.2	x-value is 7.37° to the	left of 90°		✓ method	
	B(82,63°; 0,38)			\sqrt{x} -value	
		NOTE:		✓ y-value	
		Answer only	: 3 / 3		(3)
			ct and y-value incorrect : $2/3$		
			rect and y-value correct: 1/3		
			rt incorrect of x and y-value		
		correct: 2/3			
				J	
7.3	Period = $\frac{360^{\circ}}{}$		NOTE:	√ <u>360°</u>	
	3		Answer only: 2/2	3	
	= 120°		Allswel only . 2 / 2	✓ answer	
					(2)
7.4	$x = -180^{\circ}$			✓ ✓ answer	
					(2)
					[8]

QUESTION 8

8.1	x > 0	✓ answer (1)
	OR	
8.2	$x \in (0, \infty)$	✓ answer
0.2	$y = 2^{-x}$	(1)
	OR	
	$y = \left(\frac{1}{2}\right)^x$	
8.3	y = 0	✓ answer (1)
8.4.1	Reflect the graph of f over the x -axis OR NOTE: Reflect only: $0 / 1$	✓ answer (1)
	For each point the <i>y</i> -coordinate changes sign.	
8.4.2	Reflect the graph of f over the line $y = x$. Then shift the graph down 5 units	✓✓ answer ✓ answer
		(3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

8.4.2 contd	OR Sketch the graph of the inverse of <i>f</i> . Shift the graph of the inverse of <i>f</i> down by 5 units.		
	OR Shift the graph 5 units LEFT. Reflect the graph over the line $y = x$.		
8.5	$\log_2 x < 3$ $-\log_2 x > -3$ For $-\log_2 x = -3$ $2^3 = x$ $x = 8$ $f(x) > -3$ $0 < x < 8$ or $x \in (0; 8)$	NOTE: Notation incorrect: Answer $x < 8$: 2/3 Answer only correct: 3/3	✓ multiplication by -1 ✓ Notation ✓ critical values (3) [10]

Penalise ONCE in question 9 for early rounding off.

9.1	$A = P(1-i)^{n}$ $15000 = 24000(1-0.18)^{n}$ $0.625 = (0.82)^{n}$ $n = \frac{\log 0.625}{\log 0.82}$ $= 2.37 \text{ years}$	NOTE: If subs A and P incorrectly: Answer would be $n = -2,37$ years: $n = 2,37$ years: $2/4$ If subs A and P incorrectly: Answer would be $n = -2,37$ years: $1/4$ Answer $n = 2,4$ years $4/4$ Answer rounded to 3 years and all calculations shown and $n = 2,37$ shown: $4/4$ Answer rounded to 3 years and $n = 2,37$ not shown: $3/4$	✓ substitution ✓ simplification ✓ application of logs ✓ answer (4) Incorrect formula: 0/4
9.2.1	$130000 \left(1 + \frac{0,18}{12}\right)^{2}$ $= 130000 \left(1,015\right)^{2}$ $= R \ 133 \ 929,25$	NOTE: - 1 per error for incorrect substitution to a max of 2 marks	✓✓ substitution ✓ answer (3) Incorrect formula: 0/3

Mathematics/P1 18 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

9.2.2(a)	$133929,25 = \frac{x[1 - (1,015)^{-54}]}{0.015}$	$\checkmark n = 54$
	$2008,93875 = x[1 - (1,015)^{-54}]$	✓ substitution of 133 929,25
	x = R 3636,36	·
	OR	✓ answer (3)
	$133929,25\left(1+\frac{0,18}{12}\right)^{54} = \frac{x\left[\left(1+\frac{0,18}{12}\right)^{54}-1\right]}{0,18}$	✓ n = 54
	$\frac{0.18}{12}$	✓ substitution of 133 929,25
	299255,2087 = 82,29517136x	
	x = R 3636,36	✓ answer (3)
	OR	
	$\begin{bmatrix} (0.18)^{54} \end{bmatrix}$	
	$130000 \left(1 + \frac{0.18}{12}\right)^{56} = \frac{x \left[\left(1 + \frac{0.18}{12}\right)^{34} - 1\right]}{0.18}$	$\sqrt{n} = 54$
	$130000\left(1+\frac{3}{12}\right) = \frac{2}{0.18}$	(0.18) ⁵⁶
	12	$\checkmark 130000 \left(1 + \frac{0.18}{12}\right)^{56}$
	299255,2087 = 82,29517136x	
	x = R 3636,36	✓ answer
9.2.2(b)	$Total = 3636,36 \times 54$	(3)
	= R196 363,66 NOTE:	√answer
	Accept answer = R 196	(1)
9.2.3	√1 (1.015) ⁻⁵⁴]	✓ 130 000
7.2.3	$130000 = \frac{x[1 - (1,015)^{-54}]}{0,015}$	$\checkmark i = 0.015$
	$1950 = x[1 - (1,015)^{-54}]$	
	x = R 3529,68	✓ answer 3529,68
	Total payments = $R 3529,68 \times 54$	✓ answer R 190 602,72
	= R 190 602,72	(4)
	OR	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

9.2.3 contd	$130000 \left(1 + \frac{0,18}{12}\right)^{54} = \frac{x \left[\left(1 + \frac{0,18}{12}\right)^{54} - \frac{0,18}{12}\right]}{\frac{0,18}{12}}$ $290475,5842 = 82,29517136x$ $x = R 3529,68$ $Total payments = R 3529,68 \times 54$ $= R 190 602,72$		✓ $130000 \left(1 + \frac{0,18}{12}\right)^{54}$ ✓ $i = 0,015$ ✓ answer 3529,68 ✓ answer R 190 602,72 (4)
	OR $130000 \left(1 + \frac{0.18}{12}\right)^{55} = \frac{x \left(1 + \frac{0.18}{12}\right) \left[\left(1 - \frac{0.18}{12}\right) \left(1 - \frac{0.18}{12}\right)\right]}{\frac{0.18}{12}}$ $290475,5842 = 82,29517136x$ $x = R 3529,68$ $Total payments = R 3529,68 \times 54$ $= R 190 602,72$	_	✓ $130000 \left(1 + \frac{0.18}{12}\right)^{55}$ ✓ $i = 0.015$ ✓ answer 3529,68 ✓ answer R 190 602,72 (4)
9.2.4	R196 363,66 – R190 602,72 =R5 760,96		✓ answer (1) [16]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

		1
10.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
	$= \lim_{h \to 0} \frac{-2(x+h)^2 + 3 - (-2x^2 + 3)}{h}$	$\checkmark -2(x+h)^2 + 3$
	$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 3 + 2x^2 - 3}{h}$	✓ simplification
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	(-i
	$= \lim_{h \to 0} (-4x - 2h)$ $= -4x$	✓ simplification
	NOTE: Penalty 1 mark only for incorrect notation (lim missing or = in incorrect place)	✓ answer (5)
	Answer only: 0/5	
	Cannot give mark for answer if the answer is incorrect according to the working out, even if the answer is given as $-4x$.	
10.2	$y = x^2 - \frac{1}{2x^3}$	
	$y = x^2 - \frac{1}{2}x^{-3}$	
		$\checkmark 2x$ $\checkmark + \frac{3}{2}x^{-4}$
	$\frac{dy}{dx} = 2x + \frac{3}{2x^4}$	(2) [7]
	$\frac{dy}{dx} = 2x - (-3)\frac{1}{2}x^{-4}$	
	$\int dx$ 2	

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 11

11.1
$$0 = -x^3 + x^2 + 8x - 12$$

 $x^3 - x^2 - 8x + 12 = 0$
 $(x - 2)(x^2 + x - 6) = 0$
 $(x - 2)(x - 2)(x + 3) = 0$
 $x - 2$ or $x = -3$
 x -intercepts are $(2; 0)$ and $(-3; 0)$
OR
$$0 = -x^3 + x^2 + 8x - 12$$
 $x^3 - x^2 - 8x + 12 = 0$
 $(x + 3)(x^2 - 4x + 4) = 0$
 $(x + 3)(x - 2)(x - 2) = 0$
 $x = 2$ or $x = -3$
 x -intercepts are $(2; 0)$ and $(-3; 0)$

11.2 $f'(x) = -3x^2 + 2x + 8$
 $0 = 3x^2 - 2x - 8$
 $0 = (x - 2)(3x + 4)$
 $x = 2$ or $x = \frac{4}{3}$

turning points are $(2; 0)$ and $\left(-\frac{4}{3}; -\frac{500}{27}\right)$
OR
 $(2; 0)$ and $(-1, 33; -18, 52)$

NOTE:

If $= 0$ is omitted in 11.2: penalty 1 mark

If not in coordinate form but coordinates implied: OK

$$(x - 2)(x + 3) = 0$$
 $(x - 3)(x - 2) = 0$
 $(x - 3)(x - 2) = 0$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

11.3	↑ <i>y</i>	
	2	x
	-4 -3 -2 -1 0 1 2 3 4	 →
	-2+ If can	ndidate used function
	-4+ / as	3 2 0 12
	\ - 6+ /	$= x^3 - x^2 - 8x + 12$ max 1 / 3
	-8+	
	-10+/	✓ shape
	-12	✓ y-intercept
	-1/4	✓ turning pts (3)
	-16+	(0)
	-18	
	$\left(-\frac{4}{3}; -\frac{500}{27}\right)$	
11.4	f''(x) = 0 f''(x) = 0	✓ method
	6x - 2 = 0 or $-6x + 2 = 0$	✓ answer
	$x = \frac{1}{3} \qquad \qquad x = \frac{1}{3}$	Answer only: Full
	OR	marks
	$x = \frac{2 - \frac{4}{3}}{2}$ Note: If write down $f''(x) = 6x - 2$ or	(2)
	$x = \frac{1}{3}$ $f''(x) = -6x + 2 \text{ then } 1/2$	
11.5	(2; -3) and $\left(-\frac{4}{3}; -\frac{581}{27}\right)$	✓✓ each answer
	(2, 3) and $(3, 27)$	(2) [17]
	OR	
	(2; -3) and $(-1,33; -21,52)$	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

12.1	$s(0) = 5(0)^3 - 65(0)^2 + 200(0) + 100$		$\checkmark t = 0$
	= 100 metres	NOTE: If subs $t = 8$, then answer = 100: $0/2$	✓ answer (2) Answer only: full marks
12.2	$s(t) = 5t^3 - 65t^2 + 200t + 100$ $s'(t) = 15t^2 - 130t + 200$ $s'(4) = 15(4)^2 - 130(4) + 200$ = -80 metres per minute NOTE: If used average rate of change between $t = 0$ and $t = 4$: 0/3 If subs $t = 4$ into $s(t)$: 0/3		$\checkmark s'(t) = 15t^2 - 130t + 200$ $\checkmark \text{ substitution } t = 4$ $\checkmark \text{ answer } (-80)$ (3)
12.3	The height of the car above sea level is decreasing at 80 metres per minute and the car is travelling downwards hence it is a negative rate of change. OR The <u>vertical</u> velocity of the car at <i>t</i> = 4 is 80 metres per minute. NOTE: Mark this CA even if answer to QUESTION 12.2 is completely inaccurate.		✓ speed 80 metres per minute ✓ downwards (2)
12.4	$s'(t) = 15t^{2} - 130t + 200$ $s''(t) = 30t - 130$ $130 = 30t$ $t = 4,33 \text{ minutes}$ \mathbf{OR} $t = \frac{-(-130)}{2(15)}$		✓ $s''(t) = 30t - 130$ ✓ $s''(t) = 0$ ✓ answer (3)
	t = 4.33 minutes		

- NSC Memorandum
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

