ELECTRICAL SYSTEMS AND CONSTRUCTION– LEVEL 4

CONTENTS

SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 Assessment in the National Certificates (Vocational)
2 Assessment framework for vocational qualifications
 2.1 Internal continuous assessment (ICASS)
 2.2 External summative assessment (ESASS)
3 Moderation of assessment
 3.1 Internal moderation
 3.2 External moderation
4 Period of validity of internal continuous assessment (ICASS)
5 Assessor requirements
6 Types of assessment
 6.1 Baseline assessment
 6.2 Diagnostic assessment
 6.3 Formative assessment
 6.4 Summative assessment
7 Planning assessment
 7.1 Collecting evidence
 7.2 Recording
 7.3 Reporting
8 Methods of assessment
9 Instruments and tools for collecting evidence
10 Tools for assessing student performance
11 Selecting and/or designing recording and reporting systems
12 Competence descriptions
13 Strategies for collecting evidence
 13.1 Record sheets
 13.2 Checklists

SECTION C: ASSESSMENT IN ELECTRICAL SYSTEMS AND CONSTRUCTION

1 Schedule of assessment
2 Recording and reporting
3 Internal assessment of Subject Outcomes in Electrical Systems and Construction - Level 4
4 Specifications for external assessment in Electrical Systems and Construction – Level 4
 4.1 Integrated summative assessment task (ISAT)
 4.2 National Examination
SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

This document provides the lecturer with guidelines to develop and implement a coherent, integrated assessment system for Electrical Systems and Construction in the National Certificates (Vocational). It must be read with the National Policy Regarding Further Education and Training Programmes: Approval of the Documents, Policy for the National Certificates (Vocational) Qualifications at Levels 2 to 4 on the National Qualifications Framework (NQF). This assessment guideline will be used for National Qualifications Framework Levels 2-4.

This document explains the requirements for the internal and external subject assessment. The lecturer must use this document with the Subject Guidelines: Electrical Systems and Construction to prepare for and deliver Electrical Systems and Construction. Lecturers should use a variety of resources and apply a range of assessment skills in the setting, marking and recording of assessment tasks.

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

Assessment in the National Certificates (Vocational) is underpinned by the objectives of the National Qualifications Framework (NQF). These objectives are to:

- Create an integrated national framework for learning achievements.
- Facilitate access to and progression within education, training and career paths.
- Enhance the quality of education and training.
- Redress unfair discrimination and past imbalances and thereby accelerate employment opportunities.
- Contribute to the holistic development of the student by addressing:
 - social adjustment and responsibility;
 - moral accountability and ethical work orientation;
 - economic participation; and
 - nation-building.

The principles that drive these objectives are:

- **Integration**
 To adopt a unified approach to education and training that will strengthen the human resources development capacity of the nation.
- **Relevance**
 To be dynamic and responsive to national development needs.
- **Credibility**
 To demonstrate national and international value and recognition of qualification and acquired competencies and skills.
- **Coherence**
 To work within a consistent framework of principles and certification.
- **Flexibility**
 To allow for creativity and resourcefulness when achieving Learning Outcomes, to cater for different learning styles and use a range of assessment methods, instruments and techniques.
- **Participation**
 To enable stakeholders to participate in setting standards and co-ordinating the achievement of the qualification.
- **Access**
 To address barriers to learning at each level to facilitate students’ progress.
• **Progression**
To ensure that the qualification framework permits individuals to move through the levels of the national qualification via different, appropriate combinations of the components of the delivery system.

• **Portability**
To enable students to transfer credits of qualifications from one learning institution and/or employer to another institution or employer.

• **Articulation**
To allow for vertical and horizontal mobility in the education system when accredited pre-requisites have been successfully completed.

• **Recognition of Prior Learning**
To grant credits for a unit of learning following an assessment or if a student possesses the capabilities specified in the outcomes statement.

• **Validity of assessments**
To ensure assessment covers a broad range of knowledge, skills, values and attitudes (SKVAs) needed to demonstrate applied competency. This is achieved through:
 - clearly stating the outcome to be assessed;
 - selecting the appropriate or suitable evidence;
 - matching the evidence with a compatible or appropriate method of assessment; and
 - selecting and constructing an instrument(s) of assessment.

• **Reliability**
To assure assessment practices are consistent so that the same result or judgment is arrived at if the assessment is replicated in the same context. This demands consistency in the interpretation of evidence; therefore, careful monitoring of assessment is vital.

• **Fairness and transparency**
To verify that no assessment process or method(s) hinders or unfairly advantages any student. The following could constitute unfairness in assessment:
 - Inequality of opportunities, resources or teaching and learning approaches
 - Bias based on ethnicity, race, gender, age, disability or social class
 - Lack of clarity regarding Learning Outcome being assessed
 - Comparison of students’ work with other students, based on learning styles and language

• **Practicability and cost-effectiveness**
To integrate assessment practices within an outcomes-based education and training system and strive for cost and time-effective assessment.

2 ASSESSMENT FRAMEWORK FOR VOCATIONAL QUALIFICATIONS
The assessment structure for the National Certificates (Vocational) qualification is as follows:

2.1 **Internal continuous assessment (ICASS)**
Knowledge, skills values, and attitudes (SKVAs) are assessed throughout the year using assessment instruments such as projects, tests, assignments, investigations, role-play and case studies. The internal continuous assessment (ICASS) practical component is undertaken in a real workplace, a workshop or a “Structured Environment”. This component is moderated internally and externally quality assured by Umalusi. All internal continuous assessment (ICASS) evidence is kept in a Portfolio of Evidence (PoE) and must be readily available for monitoring, moderation and verification purposes.

2.2 **External summative assessment (ESASS)**
The external summative assessment is either a single or a set of written papers set to the requirements of the Subject Learning Outcomes. The Department of Education administers the theoretical component according to relevant assessment policies.
A compulsory component of external summative assessment (ESASS) is the integrated summative assessment task (ISAT). This assessment task draws on the students’ cumulative learning throughout the year. The task requires integrated application of competence and is executed under strict assessment conditions. The task should take place in a simulated or “Structured Environment”. The integrated summative assessment task (ISAT) is the most significant test of students’ ability to apply acquired knowledge.

The integrated assessment approach allows students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

External summative assessments will be conducted annually between October and December, with provision made for supplementary sittings.

3 MODERATION OF ASSESSMENT

3.1 Internal moderation
Assessment must be moderated according to the internal moderation policy of the Further Education and Training (FET) college. Internal college moderation is a continuous process. The moderator’s involvement starts with the planning of assessment methods and instruments and follows with continuous collaboration with and support to the assessors. Internal moderation creates common understanding of Assessment Standards and maintains these across vocational programmes.

3.2 External moderation
External moderation is conducted by the Department of Education, Umalusi and, where relevant, an Education and Training Quality Assurance (ETQA) body according to South African Qualifications Authority (SAQA) and Umalusi standards and requirements.

The external moderator:
- monitors and evaluates the standard of all summative assessments;
- maintains standards by exercising appropriate influence and control over assessors;
- ensures proper procedures are followed;
- ensures summative integrated assessments are correctly administered;
- observes a minimum sample of ten (10) to twenty-five (25) percent of summative assessments;
- gives written feedback to the relevant quality assuror; and
- moderates in case of a dispute between an assessor and a student.

Policy on inclusive education requires that assessment procedures be customised for students who experience barriers to learning, and supported to enable these students to achieve their maximum potential.

4 PERIOD OF VALIDITY OF INTERNAL CONTINUOUS ASSESSMENT (ICASS)
The period of validity of the internal continuous assessment mark is determined by the National Policy on the Conduct, Administration and Management of the Assessment of the National Certificates (Vocational).

The internal continuous assessment (ICASS) must be re-submitted with each examination enrolment for which it constitutes a component.

5 ASSESSOR REQUIREMENTS
Assessors must be subject specialists and should ideally be declared competent against the standards set by the ETDP SETA. If the lecturer conducting the assessments has not been declared a competent assessor, an assessor who has been declared competent may be appointed to oversee the assessment process to ensure the quality and integrity of assessments.

6 TYPES OF ASSESSMENT
Assessment benefits the student and the lecturer. It informs students about their progress and helps lecturers make informed decisions at different stages of the learning process. Depending on the intended purpose, different types of assessment can be used.
6.1 Baseline assessment
At the beginning of a level or learning experience, baseline assessment establishes the knowledge, skills, values and attitudes (SKVAs) that students bring to the classroom. This knowledge assists lecturers to plan learning programmes and learning activities.

6.2 Diagnostic assessment
This assessment diagnoses the nature and causes of learning barriers experienced by specific students. It is followed by guidance, appropriate support and intervention strategies. This type of assessment is useful to make referrals for students requiring specialist help.

6.3 Formative assessment
This assessment monitors and supports teaching and learning. It determines student strengths and weaknesses and provides feedback on progress. It determines if a student is ready for summative assessment.

6.4 Summative assessment
This type of assessment gives an overall picture of student progress at a given time. It determines whether the student is sufficiently competent to progress to the next level.

7 PLANNING ASSESSMENT
An assessment plan should cover three main processes:

7.1 Collecting evidence
The assessment plan indicates which Subject Outcomes and Assessment Standards will be assessed, what assessment method or activity will be used and when this assessment will be conducted.

7.2 Recording
Recording refers to the assessment instruments or tools with which the assessment will be captured or recorded. Therefore, appropriate assessment instruments must be developed or adapted.

7.3 Reporting
All the evidence is put together in a report to deliver a decision for the subject.

8 METHODS OF ASSESSMENT
Methods of assessment refer to who carries out the assessment and includes lecturer assessment, self-assessment, peer assessment and group assessment.

<table>
<thead>
<tr>
<th>LECTURER ASSESSMENT</th>
<th>The lecturer assesses students’ performance against given criteria in different contexts, such as individual work, group work, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELF-ASSESSMENT</td>
<td>Students assess their own performance against given criteria in different contexts, such as individual work, group work, etc.</td>
</tr>
<tr>
<td>PEER ASSESSMENT</td>
<td>Students assess another student’s or group of students’ performance against given criteria in different contexts, such as individual work, group work, etc.</td>
</tr>
<tr>
<td>GROUP ASSESSMENT</td>
<td>Students assess the individual performance of other students within a group or the overall performance of a group of students against given criteria.</td>
</tr>
</tbody>
</table>

9 INSTRUMENTS AND TOOLS FOR COLLECTING EVIDENCE
All evidence collected for assessment purposes is kept or recorded in the student’s PoE.

The following table summarises a variety of methods and instruments for collecting evidence. A method and instrument is chosen to give students ample opportunity to demonstrate the Subject Outcome has been attained. This will only be possible if the chosen methods and instruments are appropriate for the target group and the Specific Outcome being assessed.
METHODS FOR COLLECTING EVIDENCE

<table>
<thead>
<tr>
<th>Observation-based (Less structured)</th>
<th>Task-based (Structured)</th>
<th>Test-based (More structured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Observation</td>
<td>• Assignments or tasks</td>
<td>• Examinations</td>
</tr>
<tr>
<td>• Class questions</td>
<td>• Projects</td>
<td>• Class tests</td>
</tr>
<tr>
<td>• Lecturer, student, parent</td>
<td>• Investigations or</td>
<td>• Practical examinations</td>
</tr>
<tr>
<td>discussions</td>
<td>• research</td>
<td>• Oral tests</td>
</tr>
<tr>
<td></td>
<td>• Case studies</td>
<td>• Open-book tests</td>
</tr>
<tr>
<td></td>
<td>• Practical exercises</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Demonstrations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Role-play</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interviews</td>
<td></td>
</tr>
</tbody>
</table>

Assessment instruments

Assessment tools

Evidence

10 TOOLS FOR ASSESSING STUDENT PERFORMANCE

Rating scales are marking systems where a symbol (such as 1 to 7) or a mark (such as 5/10 or 50%) is defined in detail. The detail is as important as the coded score. Traditional marking, assessment and evaluation mostly used rating scales without details such as what was right or wrong, weak or strong, etc.

Task lists and checklists show the student what needs to be done. These consist of short statements describing the expected performance in a particular task. The statements on the checklist can be ticked off when the student has adequately achieved the criterion. Checklists and task lists are useful in peer or group assessment activities.

Rubrics are a hierarchy (graded levels) of criteria with benchmarks that describe the minimum level of acceptable performance or achievement for each criterion. Using rubrics is a different way of assessing and cannot be compared to tests. Each criterion described in the rubric must be assessed separately. Mainly two types of rubrics, namely holistic and analytical, are used.

11 SELECTING AND/OR DESIGNING RECORDING AND REPORTING SYSTEMS

The selection or design of recording and reporting systems depends on the purpose of recording and reporting student achievement. Why particular information is recorded and how it is recorded determine which instrument will be used.

Computer-based systems, for example spreadsheets, are cost and time effective. The recording system should be user-friendly and information should be easily accessed and retrieved.

12 COMPETENCE DESCRIPTIONS

All assessment should award marks to evaluate specific assessment tasks. However, marks should be awarded against rubrics and not be simply a total of ticks for right answers. Rubrics should explain the competence level descriptors for the skills, knowledge, values and attitudes (SKVAs) that a student must demonstrate to achieve each level of the rating scale.

When lecturers or assessors prepare an assessment task or question, they must ensure that the task or question addresses an aspect of a Subject Outcome. The relevant Assessment Standard must be used to create the rubric to assess the task or question. The descriptions must clearly indicate the minimum level of attainment for each category on the rating scale.
13 STRATEGIES FOR COLLECTING EVIDENCE

A number of different assessment instruments may be used to collect and record evidence. Examples of instruments that can be (adapted and) used in the classroom include:

13.1 Record sheets
The lecturer observes students working in a group. These observations are recorded in a summary table at the end of each project. The lecturer can design a record sheet to observe students’ interactive and problem-solving skills, attitudes towards group work and involvement in a group activity.

13.2 Checklists
Checklists should have clear categories to ensure that the objectives are effectively met. The categories should describe how the activities are evaluated and against what criteria they are evaluated. Space for comments is essential.

SECTION C: ASSESSMENT IN ELECTRICAL SYSTEMS AND CONSTRUCTION

1 SCHEDULE OF ASSESSMENT

At NQF levels 2, 3 and 4, lecturers will conduct assessments as well as develop a schedule of formal assessments that will be undertaken in the year. All three levels also have an external examination that accounts for 50 percent of the total mark. The marks allocated to assessment tasks completed during the year, kept or recorded in a PoE account for the other 50 percent.

The PoE and the external assessment include practical and written components. The practical assessment in Electrical Systems and Construction must, where necessary, be subjected to external moderation by Umalusi or an appropriate Education and Training Quality Assurance (ETQA) body, appointed by the Umalusi Council in terms of Section 28(2) of the General and Further Education and Training Quality Assurance Act, 2001 (Act No. 58 of 2001).

2 RECORDING AND REPORTING

Electrical Systems and Operations, as is the case for all the other Vocational subjects, is assessed according to five levels of competence. The level descriptions are explained in the following table.

<table>
<thead>
<tr>
<th>RATING CODE</th>
<th>RATING</th>
<th>MARKS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
<td>80-100</td>
</tr>
<tr>
<td>4</td>
<td>Highly Competent</td>
<td>70-79</td>
</tr>
<tr>
<td>3</td>
<td>Competent</td>
<td>50-69</td>
</tr>
<tr>
<td>2</td>
<td>Not yet competent</td>
<td>40-49</td>
</tr>
<tr>
<td>1</td>
<td>Not achieved</td>
<td>0-39</td>
</tr>
</tbody>
</table>

The programme of assessment should be recorded in the Lecturer’s Portfolio of Assessment for each subject. The following at least should be included in the Lecturer’s Assessment Portfolio:

- A contents page
- The formal schedule of assessment
- The requirements for each assessment task
- The tools used for each assessment task
- Recording instrument(s) for each assessment task
- A mark sheet and report for each assessment task

The college must standardise these documents.
The student’s PoE must include at least:

- A contents page
- The assessment tasks according to the assessment schedule
- The assessment tools or instruments for the task
- A record of the marks (and comments) achieved for each task

Where a task cannot be contained as evidence in the PoE, its exact location must be recorded and it must be readily available for moderation purposes.
ASSESSMENT OF
ELECTRICAL SYSTEMS AND CONSTRUCTION
LEVEL 4
3 INTERNAL ASSESSMENT OF SUBJECT OUTCOMES IN ELECTRICAL SYSTEMS AND CONSTRUCTION - LEVEL 4

Topic 1: Electrical infrastructure

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Know about Electrical infrastructure and construction.</td>
<td>ASSESSMENT STANDARD</td>
</tr>
<tr>
<td>Range: Includes but is not limited to knowledge of the layout of the South African power grid, operating principles of coal fired power stations, layout of a typical small town power grid and how to install and terminate medium voltage overhead networks.</td>
<td>• Electrical infrastructure and construction concepts are understood.</td>
</tr>
<tr>
<td></td>
<td>• Understand the ratings on switchgear, transformers, control gear and Instruments.</td>
</tr>
<tr>
<td></td>
<td>• Explain with the aid of diagrams, the main components of a coal fired power station.</td>
</tr>
<tr>
<td></td>
<td>• Explain radial and ring feeds and the effects of faulty transmission lines (short circuit and open circuit).</td>
</tr>
<tr>
<td></td>
<td>• List and explain component parts and equipment required to install medium voltage overhead networks.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

- Student is given written or oral tests to assess his/her knowledge and understanding.
- Student is tested on interpretation of regulations, network and system concepts, understanding of drawings and electrical components used in networks and systems.
- Student must sketch and explain the operation of electrical systems.
Topic 2: Design and construct a three-phase circuit

SUBJECT OUTCOME

2.1 Design and construct a three phase circuit.

Range: Includes but is not limited to: identifying electrical symbols (ISO and IEC standard) and components, gathering relevant components and describing the functioning of circuits and components (includes the following components: contactors, protection (fuses, circuit breakers, earth leakage and over load relays), controls (temperature, limits, pressure, level, proximity and time switches), loads (resistive and inductive) and power supplies (Maximum 550 volt). Circuits to be constructed in a simulated environment and tested under supervision.

ASSESSMENT STANDARD	LEARNING OUTCOME
Knowledge of three phase circuits are used to design and construct a three phase circuit. | Identify symbols (ISO and IEC standard) and components.

- Interpret the task and format a logical plan of action.
- Design a three phase circuit diagram that will satisfy the requirements.
- Compose a list of components, tools and equipment needed for the construction of the circuit.
- Construct the three phase circuit using acceptable working procedures and construction methods.
- Evaluate the operational function of the constructed circuit and address any shortcomings.
- Rigorously test the design by applying load tests (if applicable).
- Complete the task by compiling drawings, operating procedures and specifications of the design.

ASSESSMENT TASKS OR ACTIVITIES

- Student is given the task to design and construct a three phase circuit. An oral or written test will precede the practical. Student is tested on interpretation of the task, understanding of drawings requirements for the successful execution of the task, and steps in the execution of the task.
- Student must draw up or interpret plans, produce a list of required components, tools and instruments for the successful execution of the task.
- The task can be done in a simulated environment.
- Students must be informed on the points of assessment, for example; neatness counts 5%.

External Exam
Design a three phase circuit. For example, a fast food outlet requires electrical supply points in 2 rooms. Room 1 will be equipped with 6 single-phase refrigerators of 2kW each and 10 three phase stoves of 6kW each and room 2 will................. (etc.)
Topic 3: Construct a three phase medium voltage overhead supply to domestic houses

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Construct a three phase medium voltage overhead supply to domestic houses.</td>
</tr>
<tr>
<td>Range: Includes but is not limited to: 11kV/380V three phase 4-wire network, materials such as cables, conductors, aerial bundle conductors, poles, isolators and fuses, and pin and strain type insulators, a 220V single phase supply cable to a domestic house, connection to the consumer's meter box. Excludes; mounting of 11kV/380V transformer on structure (assumed to be in place), plans (will be provided) and connection to the 11kV supply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of three phase medium voltage overhead supply to domestic houses is used to effectively construct a three phase medium voltage overhead supply to domestic houses.</td>
<td>State all statutory requirements as prescribed by the OHS Act, SABS 1418, Local Authority requirements and ESKOM reticulation specifications.</td>
</tr>
<tr>
<td></td>
<td>State worksite procedures.</td>
</tr>
<tr>
<td></td>
<td>Draw up a list of parts and equipment needed by studying the plans and diagrams.</td>
</tr>
<tr>
<td></td>
<td>Assess the terrain and decide on work to be done.</td>
</tr>
<tr>
<td></td>
<td>Mark out the route according to diagrams and servitude specifications.</td>
</tr>
<tr>
<td></td>
<td>Prepare holes or foundations, erect structures or poles, connect the stays, string the conductive elements and tension the lines.</td>
</tr>
<tr>
<td></td>
<td>Connect the 220V cable to the overhead supply, connect the transformer, isolator, fuses and other parts as per statutory requirements.</td>
</tr>
<tr>
<td></td>
<td>Remove and dispose of surplus material and restore the terrain according to environmental standards and land owner's requirements.</td>
</tr>
<tr>
<td></td>
<td>Conclude the task by completing the inspection sheets and pre-commissioning reports.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSESSMENT TASKS OR ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student is given the task to wire and commission a single-phase domestic installation. An oral or written test will precede the practical.</td>
</tr>
<tr>
<td>Student is tested on interpretation of regulations, requirements, understanding of drawings and steps in the execution of the task.</td>
</tr>
<tr>
<td>Student must draw up or interpret plans, produce a list of required components, tools and instruments for the successful execution of the task.</td>
</tr>
<tr>
<td>The task can be done in a simulated environment.</td>
</tr>
<tr>
<td>Students must be informed on the points of assessment, for example; neatness counts 5%.</td>
</tr>
</tbody>
</table>

External Exam
A written exam with no practical. The exam will test understanding of circuit design, electrical components, instrument usage, wiring code specifications, regulations, safety requirements, testing procedures, administrative work, etc.
Topic 4: Test and inspect a three phase industrial/commercial installation

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
</tr>
</thead>
</table>
| 4.1 Test and inspect a three phase industrial/commercial installation.
Range: Includes schools, office buildings, factories, shops and townhouse complexes, conducting an electrical test and inspection of a three phase industrial/commercial installation to ensure compliance with all statutory requirements and that they have been applied to the installation, using appropriate test instruments and understanding the indicated results, using appropriate inspection documents, completing the appropriate inspection documents with correct and relevant information. Test equipment may include but are not limited to multimeters, insulation tester, clip on ammeter, impedance testing equipment, earth leakage testing devices, earth electrode resistance testing equipment, continuity testers, phase rotation meters and any others appropriate to three phase industrial/commercial installations. All work must be conducted under supervision. |

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Knowledge of three phase medium voltage industrial or commercial installations is used to test and inspect a three phase industrial or commercial installation.</td>
<td>• Understand the building plans and electric schematic and wiring diagrams.</td>
</tr>
<tr>
<td></td>
<td>• The correct documentation necessary to complete the task is obtained as per management requirements.</td>
</tr>
<tr>
<td></td>
<td>• Identify the switch-yards, cabling, wire-ways, distribution boards and points of delivery and correlate this with the building plans and electric schematic and wiring diagrams.</td>
</tr>
<tr>
<td></td>
<td>• Identify the circuit protection devices and correlate this with the electric schematic and wiring diagrams.</td>
</tr>
<tr>
<td></td>
<td>• Identify the various sub-circuits within the buildings and correlate this with the electric schematic and wiring diagrams.</td>
</tr>
<tr>
<td></td>
<td>• Plan the tasks required for inspecting and testing the installation.</td>
</tr>
<tr>
<td></td>
<td>• Appropriate tools, equipment and instruments are identified and selected to meet the requirements of the task according to statutory and environmental requirements.</td>
</tr>
<tr>
<td></td>
<td>• The safety rules and regulations regarding the task are understood according to statutory requirements and safe work procedures.</td>
</tr>
<tr>
<td></td>
<td>• Environmental hazards and safety risks are identified according to environmental standards and safety risk analyses.</td>
</tr>
<tr>
<td></td>
<td>• The installation is inspected for compliance according to statutory and environmental requirements.</td>
</tr>
<tr>
<td></td>
<td>• Installation is tested according to the statutory requirements from the wiring code.</td>
</tr>
<tr>
<td></td>
<td>• The measurements obtained from the test is understood and demonstrated in context with the wiring code specifications.</td>
</tr>
<tr>
<td></td>
<td>• The premises is left the way it was found and documents required for the test and inspection are completed and handed to the supervisor.</td>
</tr>
</tbody>
</table>
Student is given the task to test and inspect a three phase industrial/commercial installation. An oral or written test will precede the practical. Student is tested on interpretation of regulations, requirements, understanding of drawings and steps in the execution of the task.

Student must interpret plans, produce a list of required components, tools and instruments for the successful execution of the task.

The task can be done in a simulated environment.

Students must be informed on the points of assessment, for example, testing electrical components inside Distribution Board counts 5%.

External Exam
A written exam with no practical. The exam will test the student's understanding of circuit design, electrical components, instrument usage, wiring code specifications, regulations, safety requirements, testing procedures, administrative work, etc.

Topic 5: Fault-find, repair and maintain three phase voltage electric circuits

SUBJECT OUTCOME

5.1 Fault-find three phase voltage electric circuits.

Range: Includes but is not limited to; 380V three phase, equipment such as transformers, motors and control gear, domestic appliances, cables, lighting, switch gear and metering. Safety policies must be adhered to. Fault finding must be done under supervision. Faults are simulated in a simulated environment.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly fault-find three phase voltage electric circuits according to recognized procedures and occupational standards.</td>
<td>Explain the principles and procedures to be applied during fault finding on three phase A.C. systems.</td>
</tr>
<tr>
<td></td>
<td>Plan and prepare for fault finding on three phase AC systems.</td>
</tr>
<tr>
<td></td>
<td>Find faults on faulty three phase AC systems.</td>
</tr>
<tr>
<td></td>
<td>Complete fault finding on three phase AC systems.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Student is given the task to fault-find three phase A.C. systems. An oral or written test will precede the practical. Student is tested on interpretation of safety regulations, use of measuring instruments, understanding of drawings and steps in the execution of the task.

Student must interpret plans, produce a list of required, documentation, tools and instruments for the successful execution of the task.

The task can be done in a simulated environment.

Students must be informed on the points of assessment, for example, correct completion of fault-finding within a specified time counts 10%. For each hour taken after the elapsed time, 5% is deducted from the total.

SUBJECT OUTCOME

5.2 Repair three phase voltage electric circuits.

Range: Includes but is not limited to; 380V three phase, equipment such as transformers, motors and control gear, domestic appliances, cables, lighting, switch gear and metering. Safety policies must be adhered to. Repair procedures must be done in accordance with accepted practises. Faults are simulated in a simulated environment.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly repair three phase voltage electric circuits according to recognized procedures and occupational standards.</td>
<td>Explain the principles and procedures to be for repairing three phase A.C. systems.</td>
</tr>
<tr>
<td></td>
<td>Plan and prepare for repairing three phase AC systems.</td>
</tr>
<tr>
<td></td>
<td>Repair faulty three phase AC systems.</td>
</tr>
<tr>
<td></td>
<td>Test and commission the repaired three phase AC system.</td>
</tr>
</tbody>
</table>
ASSESSMENT TASKS OR ACTIVITIES

- Student is given the task to repair three phase A.C. systems. An oral or written test will precede the practical. Student is tested on interpretation of safety regulations, use of measuring instruments, understanding of drawings and steps in the execution of the task.
- Student must interpret plans, produce a list of required, documentation, tools and instruments for the successful execution of the task.
- The task can be done in a simulated environment.
- Students must be informed on the points of assessment, for example, correct completion of repair within a specified time counts 10%. For each hour taken after the elapsed time, 5% is deducted from the total.

SUBJECT OUTCOME

5.3 Maintain three phase voltage electric circuits.

Range: Includes but is not limited to; 380V three phase, equipment such as transformers, motors and control gear, domestic appliances, cables, lighting, switch gear and metering. Safety policies must be adhered to. Maintenance procedures must be done under supervision. Faults are simulated in a simulated environment.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly maintain three phase voltage electric circuits according to recognized procedures and occupational standards.</td>
<td>Explain the principles and procedures to be applied during maintenance on three phase A.C. systems.</td>
</tr>
<tr>
<td></td>
<td>Plan and prepare for maintenance on three phase AC systems.</td>
</tr>
<tr>
<td></td>
<td>Maintain three phase AC systems.</td>
</tr>
<tr>
<td></td>
<td>Record data and schedule next maintenance on the three phase AC system.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

- Student is given the task to maintain three phase A.C. systems. An oral or written test will precede the practical. Student is tested on interpretation of safety regulations, use of electrical instruments, understanding of drawings and steps in the execution of the task.
- Student must interpret plans, produce a list of required, documentation, tools and instruments for the successful execution of the task.
- The task can be done in a simulated environment.
- Students must be informed on the points of assessment, for example; correct completion of maintenance within a specified time counts 10%. For each hour taken after the elapsed time, 5% is deducted from the total.
4. SPECIFICATIONS FOR EXTERNAL ASSESSMENT IN ELECTRICAL SYSTEMS AND CONSTRUCTION – LEVEL 4

4.1 Integrated summative assessment task (ISAT)
A compulsory component of the external assessment (ESASS) is the integrated summative assessment task (ISAT). The integrated summative assessment task (ISAT) draws on the students’ cumulative learning achieved throughout the year. The task requires integrated application of competence and is executed and recorded in compliance with assessment conditions.

Two approaches to the integrated summative assessment task (ISAT) may be as follows:

- The students are assigned a task at the beginning of the year which they will have to complete in phases during the year to obtain an assessment mark. A final assessment is made at the end of the year when the task is completed.

OR

- Students achieve the competencies during the year but the competencies are assessed cumulatively in a single assessment or examination session at the end of the year.

The integrated summative assessment task (ISAT) is set by an externally appointed examiner and is conveyed to colleges in the first quarter of the year.

The integrated assessment approach enables students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

4.2 National Examination
A national examination is conducted annually in October or November by means of a paper(s) set and moderated externally. The following distribution of cognitive application is suggested:

<table>
<thead>
<tr>
<th>LEVEL 4</th>
<th>KNOWLEDGE AND COMPREHENSION</th>
<th>APPLICATION</th>
<th>ANALYSIS, SYNTHESIS AND EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 - 40%</td>
<td>50 - 60%</td>
<td>0 - 10%</td>
</tr>
</tbody>
</table>