ENGLISH ACROSS THE CURRICULUM (EAC)

SCRIPTED LESSONS

FURTHER EDUCATION AND TRAINING (FET)
Introduction

It is well-known fact that English is the language of learning and teaching (LoLT) for the majority of learners in South African schools. Equally well-known is the finding by numerous studies that English is a barrier to learning. Learners, the studies and reports state, are not able to read and comprehend instructions, and neither are they able to express their knowledge in response to questions. In order to mediate this challenge, the DBE developed *The Strategy for Teaching English Across the Curriculum (EAC)*. This was quickly followed by *The Manual for Teaching English Across the Curriculum: Book 2*, which comprised content subject input on how the strategy should be mediated in the classroom. Copies of the strategy and the manual were distributed to schools in provinces, with the intention to enhance implementation of the strategy and, consequently, to strengthen the LoLT.

However, reports on visits undertaken in provinces, as well as audits conducted on the implementation of the strategy, reveal that provinces need assistance to see to the implementation of the strategy and its intended goal. The department presents herewith, an EAC Toolkit for Teachers, comprising scripted lessons in the form of a DVD and a booklet, in which subject experts demonstrate how the EAC can and should be infused in various content subjects. The toolkit seeks to stimulate thought processes and creativity about how to implement the strategy. The scripted lessons, developed by subject specialists from provincial and the national departments, dispel the criticism that content subject teachers will spend more time teaching English rather than subject content. Instead, the lessons strengthen the hand of the content subject teacher who, by addressing the language used in the subject, enhances the process of decoding the science in the subject.

The foregoing assertion is confirmed by Young, Van der Vlugt and Qanya (2005), who state that ‘concepts cannot be understood or used in isolation from the language in which they occur’ (p.viii). This belief in strengthening the LoLT is also supported by a study conducted by Thürmann (2017), who cites one of the Council of Europe’s project, “Languages in Education, Languages for Education”, which has, as one of its major aims, devising and supporting strategies and actions that seek to ensure that ‘language awareness becomes a matter of course in content teaching across the curriculum’ (p1).

Experts quoted in Thürmann’s (2017: p1) study also came to the conclusion that ‘mastering the language of schooling is a key to successful learning across the curriculum and the most reliable track to school success and elevated socio-economic status after graduating from school.’ This assertion affirms the department’s approach of implementing the EAC strategy. You are urged to engage with the scripted lessons and employ your expertise in enhancing learner attainment through strengthening the LoLT.

By turning the LoLT into a carrier and not a barrier to teaching and learning, we look forward to improved quality of learner attainment.
<table>
<thead>
<tr>
<th>NO</th>
<th>SUBJECT</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agricultural Sciences</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>English</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Geography</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>History</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Life Sciences</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>Mathematics</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>Physical Sciences</td>
<td>144</td>
</tr>
<tr>
<td>8</td>
<td>Mathematical Literacy</td>
<td>153</td>
</tr>
</tbody>
</table>
Vocabulary

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Meaning of words and context of use in the subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable</td>
<td>Able to maintain its viability by using techniques that allow for continual use.</td>
</tr>
<tr>
<td>Renewable</td>
<td>Able to recreate / re-use the resource / natural resource or source that is not depleted by use; examples include water, wind and solar power.</td>
</tr>
<tr>
<td>Resources</td>
<td>A source or supply that can be readily accessed when needed for production.</td>
</tr>
<tr>
<td>Recyclable</td>
<td>To process so that it is suitable for re-use. / To adapt for new use without changing the form or nature.</td>
</tr>
<tr>
<td>Primary agriculture</td>
<td>Involves farming or the extraction or of raw material from the Earth.</td>
</tr>
<tr>
<td>Secondary agriculture</td>
<td>The transformation of raw materials from the farm into useful goods / products.</td>
</tr>
<tr>
<td>Intensive farming</td>
<td>An agricultural production system that involves higher levels of input / resources per unit of agricultural land.</td>
</tr>
<tr>
<td>Extensive farming</td>
<td>A production system in which a large area of land is farmed with few inputs or resources.</td>
</tr>
<tr>
<td>Commercial farming</td>
<td>The farming practice where the main purpose is to sell and make profit.</td>
</tr>
<tr>
<td>Subsistence farming</td>
<td>A self-sufficient farming practice, which involves the farmer growing and harvesting only enough food to feed his family, with little or no surplus for selling.</td>
</tr>
<tr>
<td>Pollution</td>
<td>Introducing non-biodegradable harmful substances or products into the environment.</td>
</tr>
<tr>
<td>Environmental</td>
<td>External factors surrounding and affecting a given organism at any given time, e.g. air, water, minerals, other organisms.</td>
</tr>
<tr>
<td>Sedentary farming</td>
<td>The farming practice where the farmer is settled in an area and fields are not rotated.</td>
</tr>
<tr>
<td>Nomadic farming</td>
<td>The farming practice where farmers are constantly on the move in search of greener pastures / better growing land.</td>
</tr>
<tr>
<td>Arable farming</td>
<td>Cultivating crops on viable land.</td>
</tr>
<tr>
<td>Pastoral farming</td>
<td>A form of agriculture aimed at raising livestock, rather than growing crops.</td>
</tr>
<tr>
<td>Inputs</td>
<td>Resource used to produce goods and services.</td>
</tr>
<tr>
<td>Processes</td>
<td>A systematic series of actions intended to produce a product.</td>
</tr>
<tr>
<td>Outputs</td>
<td>The amount produced in a given time. / Material produced. / Yield in a given time.</td>
</tr>
<tr>
<td>Food security</td>
<td>Ensuring that all people have access to the basic supply of food they need at all times.</td>
</tr>
<tr>
<td>Starvation</td>
<td>A severe deficiency in the caloric energy intake needed to maintain an organism's life [starve].</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>An unhealthy condition that results from not eating enough food or not eating enough healthy food.</td>
</tr>
</tbody>
</table>

Vocabulary for Grade 10

Vocabulary activity: Matching terminology with definition.

Printed pages given to learners / groups, who must find the words discussed during the period. Once the terms are identified, learners (individually) must match the words provided in the word search with the definitions provided in part 2.
Introduction to the topic: Farming systems

At the end of the lesson, the learner should:

• Know the terminology used in farming systems.
• Differentiate between farming systems, input, output and processes.
• Understand how the factors determine the farming system.

Different farming systems are practised all over the world.

Farming Systems

Subsistence or commercial?

• **Subsistence farming** is when crops and animals are produced by a farmer to feed their family, rather than to take to market.

• **Commercial farming** is when crops and animals are produced to sell at market for a profit.

Sedentary or nomadic?

• **Sedentary farming** is when a farm is based in the same location all the time.

• **Nomadic farming** is when a farmer moves from one place to another.
These Farming systems are predicted by factors such as:

- **Inputs / Resources** - these include physical (land, sun, rain), human (labour) and capital (money for livestock and feed, seeds, equipment, wages).
- **Processes** are the activities on the farm that turn inputs into outputs; for example, feeding and caring for the animals or planting and tending to the crops.
- **Outputs** are products farmers sell at market or use to feed and clothe their families. Barley, hops, wheat, hay and straw are products from crops; meat, wool, leather and cheese are products from animals.

Farms can be categorised according to what is grown or reared, the size of the operation, or the agricultural techniques used.

a) **Physical factors**

Like other **primary industries**, farming is highly dependent on **physical factors** such as:

- Weather and climate: Suitable temperature, rainfall and climate for a selected crop / animal production system.
- Slope or relief of the land: For crop production, these physical factors allow for the necessary cultivation methods.
- Soil fertility: The soil is suitable for crop production, and in the case of animal production, it is suitable for the growth of pastures.
The educator must link climate and rainfall with the occurrence of type and amount of vegetation, e.g.:

Write a short paragraph on the influence of climate on the occurrence and amount of vegetation.

These factors are naturally occurring, so farmers must work with the physical factors of their farm's location. Farmers can manipulate these inputs / resources through various processes, in order to achieve increased output – for example by growing crops in a poly-tunnel (plastic tunnel greenhouse) to protect them from frost, and improving plant growth or providing additional water in the form of irrigation. However, such human interventions require extra input in the form of money or work.

b) Human / Social Factors

As with physical factors, human / social factors vary according to the type of farm and the country where the farm is located. Factors include:

• Government policy – e.g. EU subsidies, loans and US tax reductions.
• Labour – some farms require more labour than others, e.g. a market garden will employ more labourers than a hill sheep farm.

c) Economic / Financial factors – money is needed for wages, seed, buildings, animal feed, fertilizers, pesticides and machinery.

Post teaching

The following questions are presented to the class randomly or at the end of the class. Each student answers the questions presented to them on a piece of paper or index card:

• What did we do in class?
• Why did we do it?
• What did I learn today?
• How is it applied?
• What questions do I have about it?

Educator hands out Activity 1 for completion by the learners at home.
Activity: Vocabulary word search - Part 1

GRADE 10
Agricultural Ecology: Farming Systems

Use the information below to find words related to farming systems and agro ecology. Words could be written in any direction: up, down, diagonally, etc. Once you find the word, draw a circle around, as in the example.
Activity 1- Part 2: Understanding of Agricultural farming systems terminology

After you’ve done the word search, link the words found to each of the definitions / meanings below. Also indicate your understanding of the word by marking one of the smiley faces on the sheet.

<table>
<thead>
<tr>
<th>No</th>
<th>Vocabulary</th>
<th>I know it</th>
<th>I sort of know it</th>
<th>I don’t know it</th>
<th>Meaning of word and use in the subject context</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>Able to maintain its own viability by using techniques that allow continual use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>Able to recreate / re-use the resource / natural resource or source that is not depleted by use, such as water, wind, or solar power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>A source or supply that can be readily accessed when needed for production.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>To process something so that it is suitable for re-use. / To adapt something for new use without changing the form or nature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>Involves the extraction or farming of raw material from the Earth.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>The transformation of raw materials from the farm into useful goods / products.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>The agricultural production system that involves higher levels of input / resources per unit of agricultural land.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>The production system where a large area of land is farmed with few inputs or resources.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>The farming practice where the main purpose is to sell and make profit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>A self-sufficient farming practice that involves the farmer growing and harvesting only enough food to feed his family, with little or no surplus goods produced to sell for profit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>Introducing non-biodegradable harmful substances or products into the environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>External factors surrounding and affecting a given organism at any given time, e.g. air, water, minerals, other organisms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>The farming practice where the farmer is settled in the area and fields are not rotated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>The farming practice where farmers are constantly on the move in search of greener pastures / better growing resources.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>🧡</td>
<td>😐</td>
<td>😞</td>
<td>It deals mainly with cultivating crops on viable land.</td>
</tr>
<tr>
<td>No</td>
<td>Vocabulary</td>
<td>I know it</td>
<td>I sort of know it</td>
<td>I don't know it at all</td>
<td>Meaning of word and use in the subject context</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>A form of agriculture aimed at raising livestock, rather than growing crops.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Resources used to produce goods and services.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A systematic series of actions directed to produce a product.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>The amount produced in a given time / material produced / yield in a given time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ensuring that all people have access to the basic supply of food they need at all times.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Substance or object that can be decomposed by bacteria or other living organisms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A severe deficiency in the caloric energy intake needed to maintain an organism's life.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Memo: Word search
Assessment Activity

1. Complete the table by identifying the inputs, processes and outputs for the required farming operations depicted.

Example:

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Inputs</th>
<th>Processes</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study the illustrations carefully and identify the farming system depicted by writing the correct word in each column.

<table>
<thead>
<tr>
<th>Illustration no.</th>
<th>Sedentary or nomadic</th>
<th>Subsistence or commercial</th>
<th>Arable, pastoral or mixed</th>
<th>Extensive or intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Farming Systems - Grade 10

Assessment Activity: MEMO

Complete the table by identifying the inputs, processes and outputs required for each farming operation depicted.

EXAMPLES

In a sheep farm, the inputs will include the sun and water required by the grass, the purchase of breeding stock and the farmer's labour. The processes will include herding and caring for the sheep and lambs. Finally, the outputs will include wool and meat.

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Inputs</th>
<th>Processes</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inputs, machinery, fuel, fertilizer seed (Any 2)</td>
<td>Cultivation, planting management (Any 2)</td>
<td>Crop and example</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Housing, feed, veterinary products, livestock (Any 2)</td>
<td>Management, feeding, slaughtering, packaging (Any 2)</td>
<td>Meat, manure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Seed, labour (Any 2)</td>
<td>Separating seeds (Any 2)</td>
<td>Wheat, rice, straw (feed for animals)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Livestock, grass, (Any 2)</td>
<td>Management, feeding, slaughtering, packaging (Any 2)</td>
<td>Meat, hide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Labour, seed / seedling, water (Any 2)</td>
<td>Cultivation, planting, fertilising (Any 2)</td>
<td>Vegetable crop and example</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Manual labour, animal power, seeds, water, fertiliser (Any 2)</td>
<td>Cultivation, fertilizing, management, harvesting (Any 2)</td>
<td>Field crop and example</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Livestock, labour (Any 2)</td>
<td>Management, protection, herding(Any 2)</td>
<td>Meat, fuel (dung), hide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Livestock, grass, (Any 2)</td>
<td>Management, feeding, slaughtering, packaging (Any 2)</td>
<td>Meat, hide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Manual labour, seeds, water, fertiliser (Any 2)</td>
<td>Cultivation, fertilizing, management, harvesting (Any 2)</td>
<td>Field crop and example</td>
</tr>
</tbody>
</table>

(54)
Study the illustrations carefully and identify the farming system depicted by writing the correct word in each column.

<table>
<thead>
<tr>
<th>Illustration no.</th>
<th>Sedentary or nomadic</th>
<th>Subsistence or commercial</th>
<th>Arable, pastoral or mixed</th>
<th>Extensive or intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SedentaryP</td>
<td>CommercialP</td>
<td>ArableP</td>
<td>IntensiveP</td>
</tr>
<tr>
<td>3</td>
<td>SedentaryP</td>
<td>CommercialP</td>
<td>PastoralP</td>
<td>IntensiveP</td>
</tr>
<tr>
<td>6</td>
<td>SedentaryP</td>
<td>SubsistenceP</td>
<td>ArableP</td>
<td>ExtensiveP</td>
</tr>
<tr>
<td>7</td>
<td>SedentaryP</td>
<td>CommercialP</td>
<td>PastoralP</td>
<td>ExtensiveP</td>
</tr>
<tr>
<td>9</td>
<td>SedentaryP</td>
<td>SubsistenceP</td>
<td>ArableP</td>
<td>IntensiveP</td>
</tr>
<tr>
<td>11</td>
<td>SedentaryP</td>
<td>SubsistenceP</td>
<td>ArableP</td>
<td>ExtensiveP</td>
</tr>
<tr>
<td>15</td>
<td>NomadicP</td>
<td>SubsistenceP</td>
<td>PastoralP</td>
<td>ExtensiveP</td>
</tr>
<tr>
<td>18</td>
<td>NomadicP</td>
<td>SubsistenceP</td>
<td>PastoralP</td>
<td>ExtensiveP</td>
</tr>
<tr>
<td>20</td>
<td>SedentaryP</td>
<td>CommercialP</td>
<td>ArableP</td>
<td>IntensiveP</td>
</tr>
</tbody>
</table>

(36)
Subject:
Agricultural Sciences Gr 11

Topic:
Reproduction in plants

Lesson Content:
Vegetative reproduction

Pre-Activities

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Meaning of word and use in the context of the subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asexual reproduction or vegetative reproduction</td>
<td>No fertilization takes place and propagation happens by using parent plants or plant material to develop new material.</td>
</tr>
</tbody>
</table>
| Fertilization | • The action or process of fertilizing an egg or a female animal or plant, which involves the fusion of male and female gametes to form a zygote.
| | Take note of the alternative meaning of the word.
| | • The action or process of applying fertilizer to soil or land. |
| Grafting | A process of joining the living parts of two plants to encourage permanent union and the eventual formation of one plant. |
| Budding | A process whereby a single bud with a small piece of bark is joined to the stock. |
| Propagation | A process of creating new plants using different forms of live material or methods. |
| Layering | A method of creating new plants by causing their shoots to take root while they are still attached to the parent plant. |
| Transplantation | Replanting the plant by moving it to a different location. |
| Scion | The part of the plant that is to be grown by grafting or budding. |
| Stock / rootstock | The new plant to which another plant (variety) is grafted or budded. |
| Stolon | A horizontal stem / branch, which runs from the base and across or just under the ground, and which produces new plants from buds. |
| Bulbs | Bulbs are small underground stems covered in fleshy leaves where new green leaves and a flower stalk develop in the growing season. |
| Tubers | Tubers are enlarged underground stems / stolons that thicken to develop into storage organs. |
| Stem cuttings | Cuttings to be taken from the previous year’s growth - normally in winter – that are then rooted (rooting hormones increase success). |
| (Hardwood cuttings) | Underground stems with buds at the joins of scale-like leaves that are used for storage; these grow larger every year. |
| Rhizomes | Corms are short thick underground swollen stems. |
| Corm | Stems that grow along the ground and new plants and roots grow out at the nodes. |
| Runners | New plants develop on the stem of the parent plant, and the offsets may have their own roots or be connected at the stem above the soil. |
| Plantlets | Tuberous roots are roots that store food where buds form at the stem end, and which develop into new plants using the stored food. |
| Tuberous roots | Plants / animals that are genetically identical to the parent plant / animal. |
| Clones | |

Language used in the subject
Use Activity 1 - Matching terms and definitions - to test learners' understanding

Pre-teaching
The teacher must collect actual examples of items listed in the vocabulary table above to show to learners prior to the assessment being done.
At the end of the lesson, learners should:

- know the terminology involved
- be able to identify various vegetative reproduction practices and uses.

Introduction:

Reproduction in plants (plant propagation)

Reproduction in plants can be either sexual or asexual (vegetative).

- Sexual reproduction involves fertilization of an ovum by a pollen grain to form a zygote;
- In asexual reproduction, no fertilization takes place and propagation happens by using pieces of the parent plant. Asexual reproduction is also called vegetative reproduction.

There are various methods in which vegetative reproduction can take place.

During teaching:

The educator must discuss the following:

Virtually all types of shoots and roots are capable of vegetative propagation, including stems, basal shoots, tubers, rhizomes, stolons, corms, bulbs, and buds. In a few species, leaves are involved in vegetative reproduction.

- The **rhizome** is a modified underground stem serving as an organ of vegetative reproduction, e.g. iris, couch grass and nettles.
- Prostrate aerial stems, called **runners** or **stolons**, are important vegetative reproduction organs in some species, such as the strawberries, numerous grasses, and some ferns.
- **Adventitious** buds form on roots near the ground surface, on damaged stems (e.g. on the stumps of cut trees), or on old roots. These develop into above-ground stems and leaves.
- **Suckering** is a form of budding and involves the reproduction or regeneration of a plant by shoots that arise from an existing root system. Species that characteristically produce suckers include roses.
- Another type of vegetative reproduction process is the production of **bulbs**. Plants like onion, hyacinth and tulips reproduce by forming bulbs.
- **Tuberous roots**: a thick and fleshy root-like tuber without buds; examples are the dahlia and sweet potato.
- **Tubers**: A much thickened underground part of a stem or rhizome, e.g. in the potato, that serves as a food reserve and which bears the buds from which new plants arise.
- Gladioli and crocuses (**crocus**) reproduce by forming a bulb-like structure called a **corm**.
- Some orchids reproduce by growth from the **stem** or cane of the parent plant.
- Another method of using stems for propagation is **cuttings**, which can be either **hardwood, semi-hardwood or softwood cuttings**.

Post teaching

1. Have students write or talk about:
 - 3 things they learned
 - 2 things they still want to learn
 - 1 question they have.

 These values are interchangeable and can be used in different combinations, or with different questions altogether.

2. **Trivia Game**

 Learners create the questions (and answers) that will be used in a review game.

 Provide learners with assessment Activity 2 - Vegetative reproduction
Understanding terminology used in Vegetative reproduction

Activity 1

Choose a description from COLUMN B that matches a term in COLUMN A.

Write only the letter (A-L) next to the question number. Each description in Column B may be used only ONCE.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Propagation</td>
<td>a. A process whereby a single bud with a small piece of bark is joined to the stock</td>
</tr>
<tr>
<td>2. Fertilization</td>
<td>b. Cuttings to be taken from the previous year’s growth - normally in winter - and then rooted (rooting hormones increase success).</td>
</tr>
<tr>
<td>3. Asexual reproduction</td>
<td>c. Corms are short thick underground swollen stems.</td>
</tr>
<tr>
<td>4. Grafting</td>
<td>d. A horizontal stem / branch running from the base and across or just under the ground, which produces new plants from buds.</td>
</tr>
<tr>
<td>5. Fertilization</td>
<td>e. A process of creating new plants using different forms of live material or methods.</td>
</tr>
<tr>
<td>6. Budding</td>
<td>f. Tubers are enlarged underground stems / stolons that thicken to develop into storage organs.</td>
</tr>
<tr>
<td>7. Scion</td>
<td>g. No fertilization takes place and propagation happens by using parent plants or plant material to develop new material.</td>
</tr>
<tr>
<td>8. Rootstock</td>
<td>h. Underground stems with buds at the joints of scale-like leaves, which grow larger every year and serve as a storage mechanism.</td>
</tr>
<tr>
<td>9. Bulbs</td>
<td>i. A process of joining the living parts of two plants to encourage permanent union and eventually form one plant.</td>
</tr>
<tr>
<td>10. Tubers</td>
<td>j. The part of the plant that is to be grown by grafting or budding.</td>
</tr>
<tr>
<td>11. Stem cuttings</td>
<td>k. The action or process of applying fertilizer to soil or land.</td>
</tr>
<tr>
<td>12. Rhizomes</td>
<td>l. Stems that grow along the ground, and new plants and roots grow out at the nodes.</td>
</tr>
<tr>
<td>13. Runners</td>
<td>m. Action or process of fertilizing an egg or a female animal or plant, involving the fusion of male and female gametes</td>
</tr>
<tr>
<td>14. Corm</td>
<td>n. A method of creating new plants by causing their shoots to take root while they are still attached to the parent plant.</td>
</tr>
<tr>
<td>15. Tuberous roots</td>
<td>o. The plant to which another plant (variety) is grafted or budded.</td>
</tr>
<tr>
<td>16. Plantlets</td>
<td>p. New plants develop on the stem of the parent plant; the offsets may have their own roots or be connected at the stem above the soil.</td>
</tr>
<tr>
<td>17. Clones</td>
<td>q. Tuberous roots are roots that store food where buds form at the stem end, and which develop into new plants using the stored food.</td>
</tr>
<tr>
<td>18. Layering</td>
<td>r. Plants that are genetically identical to the parent plant / animal.</td>
</tr>
<tr>
<td>19. Stolon</td>
<td>s. Bulbs are small underground stems covered in fleshy leaves, and where new green leaves and flower stalks develop in the growing season.</td>
</tr>
</tbody>
</table>
Vegetative reproduction

Assessment activity 2: Grade 11

Instructions:
Study the different modes of vegetative reproduction and complete the following table. Instead of using the diagrams, learners can bring examples to class of plants that reproduce vegetatively. Examples include potato, onion.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **A**: Runner
- **B**: Notch, Shoot, Adventitious roots
- **C**: Scale leaf
- **D**: Node, Roots, Shoots, Stem Segments
- **E**: Shoot, Stem, Root
- **F**: Base of scape, Adventitious root
- **G**: Adventitious root
- **H**: Shoots growing out of the ground
<table>
<thead>
<tr>
<th>Figure</th>
<th>Vegetative mode</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vegetative reproduction

Assessment activity: Memorandum

<table>
<thead>
<tr>
<th>Figure</th>
<th>Vegetative mode</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Runners✓</td>
<td>Stems that grow along the ground. New plants and roots grow out at the nodes.✓✓</td>
<td>Strawberries / hen & chickens ✓✓ (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Plantlets / Offsets✓</td>
<td>New plants develop on the stem of the parent plant. The offsets may have their own roots or be connected at the stem above the soil.✓✓</td>
<td>Prickly-pears Pineapple ✓✓ (2)</td>
</tr>
<tr>
<td>C</td>
<td>Corm✓</td>
<td>Corms are short thick underground stems. There are buds at the bottom of the scale-like leaves that develop into new plants.✓✓</td>
<td>Gladiola Freesia Crocus (Any two)✓✓</td>
</tr>
<tr>
<td>D</td>
<td>Tuberous roots✓</td>
<td>Tuberous roots are roots that store food. Buds form at the stem end; these develop into new plants using the stored food.✓✓</td>
<td>sweet potatoes cassava dahlia (Any two)✓✓</td>
</tr>
<tr>
<td>E</td>
<td>Rhizomes✓</td>
<td>Underground stems with buds at the joins of scale-like leaves. Rhizomes grow larger every year and plants form at the buds to form clumps of plants.✓✓</td>
<td>Canna Bamboo Ginger Some grasses (Any two)✓✓</td>
</tr>
<tr>
<td>F</td>
<td>Tubers✓</td>
<td>Tubers are the swollen ends of underground stems. Buds on the tubers grow into new plants.✓✓</td>
<td>Potatoes Yams ✓✓</td>
</tr>
<tr>
<td>G</td>
<td>Bulbs✓</td>
<td>Bulbs are small underground stems covered in fleshy leaves. New green leaves and a flower stalk develop from the bulb in the growing season. Buds that develop into new bulbs✓✓</td>
<td>Onion Garlic ✓✓</td>
</tr>
<tr>
<td>H</td>
<td>Stem cuttings✓</td>
<td>Cuttings to be taken from the previous year’s growth - normally in winter - are then rooted. (Rooting hormones increase success.)✓✓</td>
<td>Trees Shrubs ✓✓</td>
</tr>
<tr>
<td>Pre- Knowledge: Vocabulary</td>
<td>Variation and Selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In this lesson, you will be exposed to the following terminology: (Tick for understanding)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heritability: The degree to which genetics determine a characteristic.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trait: Characteristics that are inherited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics: The distinguishing features or qualities. / Indicating the character. / Constituting. / Distinctive to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene: The unit of hereditary material.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial-selection: Using technology in choosing the parents for the breeding process.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural-selection: Survival of the fittest.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Insemination Introduction of sperm into the female using a pistolette.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial vagina: An instrument used for the collection of fresh semen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spermilisor: A microscope used to test sperm quality.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vocabulary

Selection:	Choosing from numerous items or objects. In our case, choosing animals to breed with
Breeding:	The process by which young animals are produced by their parents. / Mating or improvement of animal or plant breeds using selection or other methods.
Note:	Meaning of breed
	- mate and then produce offspring (verb) or
	- stock of animals or plants within a species, which have a distinctive appearance and which have been developed by selection. (noun)
Desirable:	Worthy of having / Pleasing / Excellent / Recommended
Qualitative:	Concerned with quality / qualities
Quantitative:	Can be measured / May be estimated by numbers or quantity / Measuring of quantity / Relating to a metric system
Profitability:	Yielding profit / Useful economically / Beneficial
Pure-bred:	Not mixed - Animals whose ancestors derive over many generations from a recognized breed.
Culling:	Remove or put aside those that are inferior. / To choose and get rid of the inferior ones. / To separate bad ones from good ones and get rid of bad ones.
Disruptive:	Relating to a new product or idea that radically changes an industry by creating a new market or disrupting an existing one.
Directional:	Adapted to a particular direction. / Adapted to achieve a particular outcome.
Stabilising:	[stable] To maintain at a given level or quantity. / Unfluctuating.
Pedigree:	Derived from a line of descendants / Excellent record / Pure ancestry history / A type of selection that is based on the quality of the animal’s ancestor.
Progeny:	As a child / Off-spring / Resulted from something else / Outcome / A type of selection that is based on the quality of the animal’s offspring
Mass:	In the whole / Collection / In numbers / Type of selection that is based on the individual animal in a population performance on the field
Family:	The basic social unit consisting of parents and their children. / A type of selection that is based on the quality of the animal’s relatives of its generation (full-siblings / half-siblings).
Ancestors:	A person from whom one is descended.
Heritability:	Capable of being inherited.
Estimated Breeding Value (EBV):	Simply, the value of an animal’s additive genetic effect. / The value of genes that an animal may transfer to its offspring / Half of the Breeding Value (BV) of its parent or twice the value of the BV of its offspring.

Activity 1 – Vocabulary understanding and knowledge (list of words).
Copy this and give it to learners to complete before or during the lesson.

During teaching

At the end of the lesson, the learners should:

- Understand the terminology used.
- Be able to apply selection types based on variations available.
- Understand variation and selection, as used in Agriculture.

Introduction to the topic: p3
See script: p3-p5
Lesson Script

Introduction to the topic: Variation and Selection.

Now that we have dealt with the basic principles of genetics, we need to see how genetics fits into the farming sector and how genetics is applied to enhance agricultural production, which will eventually influence the profitability of the enterprise. Variation in populations forms the basis of selection in breeding programmes. Watch the video – Meet the Super Cow.

During teaching: The following must be discussed

What is variation?

As seen in the video, in order for a new breed to be developed, the farmer needs individual animals/plants he can select from. These individuals all come from the population of animals he has available and they have varying characteristics. We can thus say that variation refers to the differences in characteristics between individuals of the same species.

Variation is the raw material the breeder has available for herd and flock improvement, e.g. variation in size, rate of growth, efficiency of feed utilization, milk production, speed, milk fat %, etc.

Selection is done using variation in the hope of producing better offspring. (Discuss.)

As explained, variation occurs in terms of normal distribution, as shown in the Bell Curve below:
Teacher to discuss the above graph:

- The majority of the population falls into the average band (Meets expectations).
- The smallest number of individuals in a population with a specific characteristic will be on the extreme ends of the curve (Unacceptable and Outstanding).

If we apply the above normal distribution curve regarding milk production in a population of dairy cows, the distribution will be as follows:

As seen in the graph, the majority of cows produce an average milk yield of between 3000-4500kg over a 250 day period. As shown, the number of cows producing the least amount of milk and the number of cows producing the highest amount of milk can be found at the extreme ends of the graph.

Why is this information important in selection and breeding?

To increase milk production in a herd, the farmer selects bulls from the dark blue band and breeds them with cows from the green and light blue band.

Applied principal: When improving the herd for better milk production (or any other quantitative characteristic), average and above average cows are being inseminated / mated by the best bulls (top 2%).

Selection for improving traits / characteristics can either be directional, stabilizing or disruptive.
Directional selection leads to a shift in the average of the population – either right or left.

Directional selection: For one extreme against the other extreme

In the case of disruptive selection, selection is done in such a manner that two distinct populations are created.

Disruptive selection: For both extremes against moderate traits

E.g. Normal Brahman vs miniature Brahman populations.
In the case of stabilizing selection, selection is done against both extremes.

Stabilizing Selection: For moderate traits against both extremes

For example, calves with heavy (birth) weight in calves may result in dystocia, whereas small (light) calves will have a limited chance of survival.

To achieve any of the above aims, the following selection methods can be used:

- Mass selection: type of selection that is based on the individual animal in a population performance on the field

The most basic way is to rank the animals according to their phenotype and select the best ones for breeding.

- Progeny selection: type of selection that is based on the quality of the animal’s offspring

- Family selection: type of selection that is based on the quality of the animal’s relatives of its generation (full-siblings / half-siblings)

- Pedigree selection: type of selection that is based on the quality of the animal’s ancestors

It is important to realize that selection dictates the breeding method that you will use in your herd.

Next Lesson - Breeding methods
Activity 1 - Vocabulary understanding.

<table>
<thead>
<tr>
<th>No.</th>
<th>Vocabulary</th>
<th>😄</th>
<th>😐</th>
<th>😞</th>
<th>Your understanding of the meaning of the words and use in the subject context.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Breeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Desirable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Qualitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Profitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Purebred</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Culling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Disruptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Directional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Stabilising</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Artificial selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Natural selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Pedigree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Progeny</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Ancestors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Heritability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Estimated Breeding Value (EBV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity 2:

Complete the following crossword puzzle on selection terminology. Use the clues provided on the right.

Across
1. Selection based on the individual’s performance in a mixed population.
3. Choosing animals to breed with.
7. Instrument used for the collection of fresh semen.
11. Characteristics that are inherited.
13. Choosing breeding stock based on the family history / bloodline.
14. Choosing breeding material based on ancestors.
15. The process by which young animals are produced by their parents.
17. The Bell curve peak moves in one direction.

Down
2. The peak of the Bell curve becomes narrower.
4. It is used to deliver sperm into the female reproductive tract using a piston to reach the cervix.
5. Two peaks are created in a Bell curve.
6. An instrument used to analyse sperm activity and health / quality.
8. Using technology in choosing the parents for the breeding process.
9. Choosing breeding stock based on the performance of the offspring.
10. The degree to which genetics determines the characteristics
12. Selection based on an individual’s performance in a group.
Activity 3: Learners must have this available when you explain this content.

Types of Selection:

Breeders raise cattle for various reasons. Example: Full / large size cattle for large farms and small sized cattle for small farms or to be used as pets. While listening in class, complete your understanding of the types of selection and how these are applied in the agricultural sector.

<table>
<thead>
<tr>
<th></th>
<th>Directional selection</th>
<th>Stabilizing selection</th>
<th>Disruptive selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most common phenotype (previously)</td>
<td>Most common phenotype (previously)</td>
<td>Most common phenotype (previously)</td>
<td>Most common phenotype (previously)</td>
</tr>
<tr>
<td>Most common phenotype now</td>
<td>Most common phenotype now</td>
<td>Most common phenotype now</td>
<td>Most common phenotype now</td>
</tr>
<tr>
<td>Because the peak of the graph ...</td>
</tr>
<tr>
<td>This will lead to ...</td>
</tr>
<tr>
<td>Agricultural Example</td>
<td>Agricultural Example</td>
<td>Agricultural Example</td>
<td>Agricultural Example</td>
</tr>
</tbody>
</table>
Marking guidelines for activities:

Activity 2: Crossword puzzle

Across
1. Selection based on the individual’s performance in a mixed population – Mass selection
3. Choosing animals to breed with - Selection
7. The instrument used for the collection of fresh semen – Artificial Vagina
11. Characteristics that are inherited - Traits
13. Choosing breeding stock based on the family history / bloodline – Family Selection
14. Choosing breeding material based on ancestry – Pedigree selection
15. The process by which young animals are produced by their parents – Artificial Breeding
16. Survival of the fittest – Natural selection
17. The Bell curve peak moves in one direction – Directional selection

Down
2. The Bell curve becomes narrower – Stabilizing Selection
4. Delivers sperm into the female reproductive tract using a pistolet to reach the cervix – Artificial insemination
5. Two peaks in a Bell are created – Disruptive selection
6. Analysing sperm activity and health / quality - Spermilisor
8. Using technology in choosing the parents for the breeding process – Artificial selection
9. Choosing breeding stock based on the performance of the offspring - Pedigree Selection
10. The degree to which genetics determines characteristics - Heritability
12. The unit of hereditary material - Gene
<table>
<thead>
<tr>
<th>Phenotypes: Small✓, Medium✓, Large✓</th>
<th>Phenotypes: Small✓, Medium✓, Large✓</th>
<th>Phenotypes: Small✓, Medium✓, Large✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most common phenotype: Medium✓</td>
<td>Most common phenotype: Medium✓</td>
<td>Most common phenotype: Medium✓</td>
</tr>
<tr>
<td>After selection, the most common phenotype is larger.✓</td>
<td>After selection, the most common phenotype is still medium.✓</td>
<td>After selection, the most common phenotype is both small and large.✓</td>
</tr>
<tr>
<td>Because the peak of the graph will move to the right.✓</td>
<td>Because the peak of the graph narrows and remains over the medium sized animals.✓</td>
<td>Because the peak of the graph will develop in two places, i.e. on the left and on the right.✓</td>
</tr>
<tr>
<td>This will lead to an increase in the average weight in the population. ✓✓</td>
<td>This will lead to more animals having a medium weight. ✓✓</td>
<td>This will lead to two distinct populations developing, i.e. small and large individuals. ✓✓</td>
</tr>
<tr>
<td>Agricultural examples:</td>
<td>Agricultural examples:</td>
<td>Agricultural examples:</td>
</tr>
<tr>
<td>Higher milk production✓, higher weaning weight ✓</td>
<td>Mature mass✓, birth weight✓</td>
<td>Miniature and normal sized breeds✓, colour variation✓</td>
</tr>
</tbody>
</table>
Activity 3: Memorandum

Examples of alternative assessment

Classwork / Homework activity

From the illustrations below, select the animals you will breed to show:

1. Stabilizing selection
2. Disruptive selection
3. Directional selection

You should also be able to show the F1 generation of your proposed breeding practice, and indicate for which traits / selection goals you would apply each selection type.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Memo

1. Stabilising

Animals to breed: D ✓ X 3 ✓ → F1 D or 3 ✓

Selection goals / traits – birth mass ✓, mature weight ✓

2. Disruptive

Animals to breed: A ✓ X 2 ✓ → F1 A/2 ✓ and B ✓ X 4 ✓ → F1 B/4 ✓

Selection goals / traits – miniature and normal sized populations ✓/ colour differences ✓

3. Directional

Animals to breed: A ✓ X 3 ✓ → F1 A/2 ✓

Selection goals / traits – Increase in weaning weight ✓, milk production ✓, etc.
Basic Genetics

Selection and Variation

Name: ________________________________

Matching: Write the letter of the correct matching item next to each problem, e.g. 17. r __

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mass selection</td>
<td>a</td>
<td>Degree to which the genetics determines the characteristic.</td>
</tr>
<tr>
<td>2</td>
<td>Selection</td>
<td>b</td>
<td>The Bell curve peak moves in one direction.</td>
</tr>
<tr>
<td>3</td>
<td>Artificial Vagina</td>
<td>c</td>
<td>Survival of the fittest.</td>
</tr>
<tr>
<td>4</td>
<td>Traits</td>
<td>d</td>
<td>Choosing breeding stock based on the performance of the offspring.</td>
</tr>
<tr>
<td>5</td>
<td>Family Selection</td>
<td>e</td>
<td>The process by which young animals are produced by their parents.</td>
</tr>
<tr>
<td>6</td>
<td>Pedigree selection</td>
<td>f</td>
<td>Using technology when choosing the parents for the breeding process.</td>
</tr>
<tr>
<td>7</td>
<td>Breeding</td>
<td>g</td>
<td>It delivers sperm into the female reproductive tract using a pistolet to reach the cervix.</td>
</tr>
<tr>
<td>8</td>
<td>Natural selection</td>
<td>h</td>
<td>Two peaks are created in a Bell curve.</td>
</tr>
<tr>
<td>9</td>
<td>Directional selection</td>
<td>i</td>
<td>Choosing breeding material based on ancestry.</td>
</tr>
<tr>
<td>10</td>
<td>Stabilising selection</td>
<td>j</td>
<td>Characteristics that are inherited.</td>
</tr>
<tr>
<td>11</td>
<td>Artificial insemination</td>
<td>k</td>
<td>Analysing sperm activity and health / quality.</td>
</tr>
<tr>
<td>12</td>
<td>Disruptive selection</td>
<td>l</td>
<td>Choosing animals to breed with.</td>
</tr>
<tr>
<td>13</td>
<td>Spermilisor</td>
<td>m</td>
<td>The instrument used to collect fresh semen.</td>
</tr>
<tr>
<td>14</td>
<td>Artificial selection</td>
<td>n</td>
<td>The Bell curve becomes narrower.</td>
</tr>
<tr>
<td>15</td>
<td>Heritability</td>
<td>o</td>
<td>A unit of hereditary material.</td>
</tr>
<tr>
<td>16</td>
<td>Pedigree selection</td>
<td>p</td>
<td>Choosing breeding stock based on the family history / bloodline.</td>
</tr>
<tr>
<td>17</td>
<td>Gene</td>
<td>q</td>
<td>Selection based on the individual's performance in a mixed population.</td>
</tr>
</tbody>
</table>

http://www.water.ca.gov/education/images/watersupplyuse-sm.jpg

- Each group is to use the source and own knowledge to discuss how water is used in their allocated category.
- One person from each group reports back to the class about the uses of water in each category.
- The educator consolidates the lesson by alluding to the different uses of water.
Role of the language teacher

- Teaches general vocabulary.
- Teaches language structures and conventions, e.g. prefixes and suffixes.
- Teaches how to create definitions of concepts.
- Teaches the formal steps of the writing process.
- Gives guidelines to the subject teachers.

Role of the content subject teacher

- Teaches subject related vocabulary.
- Makes learners practise the structures.
- Helps learners to create their own definitions of concepts.
- Makes learners practise process writing.
- Consults language teachers for advice on language.

Subject	ENGLISH
Topic | COMPREHENSION
Lesson Content: Being able to comprehend a text to determine its purpose and to evaluate its content is a life skill that will be important for you, no matter what you do in the future. In your future, you will have to read contracts, newspaper articles, reports, literature, business letters, advertisements … you know that I could go on and on with this list. Our immediate need is for you to be able to understand comprehension passages and to answer the questions that accompany them, and so do well in your language classes and the examination papers. In the Language and Comprehension Examination you will be given one passage with questions to test how well you understand the text. You will also be given a piece of visual material in this section, and you will be asked questions on it. Other parts of the paper will also test your ability to understand what you are reading in context.

Language aspects covered

Slide 2
Pre-activities

- **Vocabulary**
- **Language used in the subject**
- **Prediction**

Vocabulary:
- solar
- renewable
- biomass
- capacity-optimization
- intermittent
- fluctuation
- bio-energy
- synergy
- photovoltaics

You should try to work out the meaning of the words above. Use word attack skills, for example:

- breaking the word down into its simplest form, e.g. “renewable” - the base word here is NEW. Renewable then has to do with making something new again or replacing (re-using) it.
- identify the prefix and/or suffix to establish the meaning, e.g. “renewable”: the prefix in the word is re-, which means ‘again’; the suffix -able makes the word an adjective, which implies ‘have the ability to do’. Therefore, the root word “new” now means ‘having the ability to make new again’.
- read the words in the context of the passage provided – “The role of wind and solar in electricity production will increase more rapidly compared to other renewable sources.” Linking the word ‘renewable’ with the words wind and sun (solar) implies that, unlike other sources of electricity (e.g. coal), which can be exhausted / depleted (used up), the wind and sun will always be available.
- Sometimes you will have to look for the origin of the word – “photovoltaics”. (The word ‘photo’ has its origin in Greek and it means light.) The word ‘volt’ comes from the name of the scientist Alessandra Volta, who invented the first photovoltaic battery, and it is used to refer to a unit of electricity.

You will now have to try some of these techniques to find the meaning of the words in the word list. Before you start, make sure that you understand the following language aspects:

Language aspects:

- **Jargon** – These are special words or expressions that are used by a profession or group of people and which are difficult for others to understand. For example, scientific jargon.
- **Hyphen** - Hyphens are used in many compound words to show that the component words have a combined meaning.
- **Compound word** - A compound word is a combination of two or more words that function as a single unit of meaning.
- **Prefix** - A prefix is added to the beginning of a word to change its meaning.
- **Suffix** - A suffix is a letter or group of letters that is added to the end of a word to change its meaning or to ensure it fits grammatically into a sentence.
- **Root word** - A basic word to which affixes (prefixes and suffixes) are added is called a root word, because it forms the basis of a new word. The root word is also a word in its own right.
Vocabulary:

Solar - relating to or determined by the sun.

Re · *new* · *able* - (of a natural resource or source of energy) not *depleted* when used. A natural resource or source of energy that is not depleted by use, such as water, wind or solar power.

Bio · *mass* - organic *matter* used as a fuel, especially in a power station for the generation of electricity.

Capacity-optimization [focus on use of the hyphen] - the action of making the best or most effective *use* of a resource to produce the *maximum amount* of energy. The *hyphen* is a punctuation mark that is used to form a compound word – it links two words together to form a new compound word.

Inter·mitted – Prefix ‘inter’ means ‘between’, ‘among’, ‘in the midst of’. Therefore, intermitted means when something is suspended or discontinued for a time before it becomes active again.

Inter·mittent - occurring at irregular *intervals*; not continuous or steady.

Fluctuation [to *fluctuate*] - an irregular rise and fall in number or amount.

Bio·energy - renewable energy produced by *living organisms*.

Synergy - the interaction or cooperation of two or more organizations, substances, or other agents to produce a combined effect that is greater than the sum of their separate effects.

Photo·volt·aics - the branch of technology concerned with the production of *electric current* at the junction of two substances. It is a term that means the conversion of *light* into *electricity*.

Subjects: Physical Sciences, Agricultural Sciences, Geography and Life Orientation

Prediction: The heading of the article you are about to read is: *Flexibility from bio-energy*.

Consider the terms above and the heading of the article. What would you guess the passage is about?

The title of the article is very important, as it prepares you for what you are going to read in your comprehension passage.

Reading for comprehension is different to reading for enjoyment, therefore your approach to reading for comprehension will be different to when you are just reading a book. The purpose of reading for comprehension is to read with a specific focus, in order to answer questions.

Skimming: Before you read the text, try to work out what it is about. Often the title, source (where the text is from), or the author’s name can provide hints about what the text will be about or what genre it is from. This is just a VERY quick glance at the contents of the text. You are just finding out what the passage is about in a brief way.
During teaching
Introduction of topic:

After skimming the text, you will first read the questions to ensure you know what questions you will need to answer before you read the text in full. A good strategy (especially during examinations, when you have limited time to re-read the passage) would be to start by reading the questions first.

Read each question slowly and carefully, in their order of appearance. Focus on the question verbs and their meaning to get an idea of what the passage is about, and (most importantly) what to look out for when you start reading it. Underline significant words in the questions – if you are to answer the questions properly, you need to be thoroughly familiar with the vocabulary of questioning.

Now that you have an idea of what is being asked, carefully read the extract, with the aim of discovering as many points as possible that seem to be related to the questions. Keep the questions in the back of your mind.

As you read through the passage, answer the following questions mentally, to help you gain an overview of what the text is about.

• Who wrote the text?
Perhaps you are familiar with the author, or you may realise that it was written by someone famous. In the example text, the author is a researcher.

• For whom was the text written?
Knowing who the intended audience is will help you to see how the author has written with this target group in mind. The audience is very specific in our sample text, hence the jargon (subject specific words) used.

• Why has the author written this text?
The writer’s intention will influence his or her style of writing. In our sample, the writer wants to inform the reader about the benefits of moving away from the conventional ways of creating energy to using bio-energy as a flexible option.

• Where does this text come from?
The source of the text - for example a magazine, recipe book, newspaper, blog, scientific journal, etc. - will influence the subject matter and the style of the text. The source of this text is a webpage, as referenced.

• How is the message being communicated?
What style, tone and register does the author use to convey his or her ideas to the reader? In the sample text, the style and tone is formal, factual, informative, and scientific jargon is used.
While reading, you must also underline keywords and phrases that would make answering the questions easier.

Flexibility from bio-energy

The role of bio-energy in balancing the electricity grid and providing storage options

The role of wind and solar in electricity production will increase more rapidly compared to other renewable sources. The energy market transformation from an energy-optimized to capacity-optimized system is expected when the share of intermittent or uncontrollable electricity becomes large enough. Bio-energy, in its various forms, can eventually contribute to balancing the electricity grid as an effective, low carbon and low-cost grid management and energy storage option. Seasonality, i.e. energy demand fluctuations in the winter and summer seasons, is one of the key challenges for future smart energy system management, which will have various consequences for optimization in various parts of Europe and globally. This represents a clear synergy in seasonal balancing between photovoltaics and biomass, especially in connection with biomass combined heat and power (CHP).

Written by Antti Arasto, Research Manager

http://makingoftomorrow.com/flexibility-from-bioenergy/

<table>
<thead>
<tr>
<th>Assessment (consolidation)</th>
<th>Always pay attention to the marks allocated per question. The amount of detail provided in your response should relate to the number of marks allocated. Answer all the questions. Do not leave any out – even if you do not know the answer. Try! You are sure to get no marks if you leave a question out, but you may get some marks if you just try. Partially accurate answers are allocated part credit. When asked for an opinion, substantiate your answer. Give reasons why you say what you say. Sometimes this substantiation will come from the text, but not always. It should, however, ALWAYS be grounded in the text. Make sure the marker understands why you have answered as you have. When asked to quote, copy the words from the text exactly as they appear in the text, and use inverted commas. Pay attention to spelling and punctuation in your answers, as spelling mistakes are unforgiveable when the words appear in the text, or in the questions. Write neatly, and check that your numbering is accurate. Certain words seem to occur frequently in comprehension questions. Different questions require distinct types of responses. Answers to most questions that use the following verbs will be found in the text, e.g. name, list, state, identify, outline, etc. These questions are called lower order questions, as they require very little thinking to answer them correctly.</th>
</tr>
</thead>
</table>

Slide 22

How to answer questions

Slide 23

Lower Order Questions

- Name
- List
- State
- Identify
- Outline

Slide 24

Middle Order Questions

- Explain
- Compare
- What is the intention
- *Why is the statement true/false*
Question: List TWO renewable energy sources. (2)
Answer: Wind and Solar (sunlight)

The answers to questions that use verbs from the list below, require you to take what is in the passage and to infer meaning from it or to change the way the information is presented, e.g. explain, compare, what is the intention, why is the statement true/false, etc. These types of questions are called middle order questions, as they require some understanding and interpretation from you of what you have read. Answers are not as readily available as with lower order questions.

Question: Explain the writer's intention in the passage 'Flexibility from bio-energy'. (2)
Answer: The writer wants to inform the reader about the benefits of moving away from conventional ways of creating energy to using bio-energy as a flexible option.

The most challenging questions are called higher order questions, as they require the highest level of thinking. This does not mean they are the most difficult to answer, but they do require you to think for yourself, as the answers cannot be found in the passage. These questions require that you critically analyse the question to be able to answer effectively. These questions traditionally carry the highest marks, so be sure to answer them fully. Examples of verbs used in these questions are: comment critically; do you think...; in your opinion...; is the title suitable...; do you agree with...; discuss the writer's use of...; discuss the effectiveness of...; discuss your response to...; etc. Traditionally, these answers do not have a clear right or wrong answer; marks are awarded for your argument within the context of the passage and the question - so be very clear and concise when answering these questions. No marks are awarded for: yes/no; agree/disagree.

Question: In your opinion, is the title of this article suitable? Substantiate your answer. (2)
Answer: Open-ended. A suitable response will be accepted, e.g.:

Yes.

The passage focuses mainly on bio-energy and how it can be a useful alternative source of energy; therefore, 'Flexibility from bio-energy' is a suitable title, as it hints at the use of bio-energy as a flexible source of energy.

OR

No.

Although the article addresses the use of bio-energy, it does not explore the flexibility of bio-energy, as is suggested in the title.

NOTE: NO mark will be awarded for 'Yes' or 'No'. Other suitable responses can be accepted. You can score one mark for an answer that is not well-substantiated.
Other questions that may seem difficult:

- What is the effect of ...?
 Effect means the impression created, for example: ‘buzzing’ conveys the sound made by bees.

- Why is this word effective?
 Effectiveness refers to the merit or advantage of using a particular word or phrase. Does the word produce the effect it was meant to produce? Is it a good / poor choice of word to express / convey the meaning? Significance is the importance of a word in its context. Why has it been used rather than another word?

- What is implied by ...?
 Implied is used to ask what hidden meanings a word or sentence might have in addition to its literal meaning.

- What is the writer’s attitude towards ...?
 Attitude is how the writer views a particular event, person, place and so on.

- What are the writer’s / reader’s feelings about ...?
 Feeling is the emotion the writer or reader has about a particular matter. Feeling is often made clear by the tone or ‘sound’ used to express the particular emotion.

Presentation slides

COMPREHENSION GR 10.pptx
Subject: ENGLISH

Grade 11

Topic: READING AND VIEWING

Lesson – content CARTOON / COMIC STRIP

Subjects Business Studies, Life Orientation, Economics, Accounting, Mathematical Literacy, etc.

| Pre-reading activities | Vocabulary Activity: In a classroom setting, the teacher will give learners a mix-and-match activity. Complicated or strange words / phrases will be written on strips of paper and given to learners to match with meanings already pasted on the wall / board. Below is a list of examples of words and their meanings:

- **Sick** - (slang) meaning ‘awesome’ or ‘cool’.
- **Naw** - (slang) meaning ‘no’.
- **Rate** - the amount of a charge or payment expressed as a percentage of another amount, or as a basis of calculation.
- **Loan-shark** - a moneylender who charges extremely high rates of interest, typically under illegal conditions.
- **Dude** - (slang) meaning a man.
- **Steep** – (with reference to price or demand) not reasonable; excessive.

NB! The cartoonist has used the pun and the connotative meaning of words to create humour.

- **Caption analysis:** Learners are asked to read the caption, ‘Personal Financial Management’ and predict what the comic strip / cartoon could be about. |
During teaching

Language used in the subject, e.g. Every day we are bombarded with visual texts that are designed to communicate a message to us. Understanding visual texts is a unique skill and is not the same as understanding a written text. In this session, we will analyse cartoons / comic strips, focussing on how and what they communicate to us, the readers.

- **Cartoons / comic strips** consist of two kinds of text, namely picture texts and language texts.
 - A picture of a character tells the reader about emotions and characteristics.
 - Language text refers to the words that appear in the panel.
 - Language texts usually consist of dialogue and sound effects.
 - Language texts can be seen in speech bubbles, thought bubbles, captions and headings.

- **A speech bubble** indicates the words spoken by the character. It has a sharp point, called a connecting line, pointing towards the character who is speaking.

- **A thought bubble** has rounded edges with smaller bubbles serving as a connecting line. This indicates that the character is thinking the words - the words are not uttered.

- **Captions and headings** are normally at the top of the cartoon / comic strip.

- **Sound imitations / indications** are usually in **bold** or **large** letters.

- **A blasting cloud** indicates an explosion.

- **Action lines** indicate the movement of a character.

- The following are a few examples of the features of comic strips, as explained above:
• The pictures in a cartoon are usually in a **single frame**. Cartoons often contain caricatures of well-known people. You can recognise who they are about, but certain features are exaggerated.

• In an examination, you will be required to answer questions based on both the visual text and the written text. When you answer questions on the visual text, be very specific. Let’s look at a few possible examples:

 o Study the **body language** of the characters in Frame 1. What words can we use to describe the characters? Look at the arms and shoulders - the character on the left has his hands in his pockets. Look at their faces - the character on the left has a wide smile and both characters are excitedly looking at the car. Look at their posture - they both look relaxed.

 o Let’s look at another example. In frames 1-3, the man on the left is constantly smiling and his posture does not change. In Frame 3, the man on the left is **very excited** and **proud**, while the man on the right looks **puzzled** / **shocked**.

 We can see this in their body language (facial expressions, e.g. a smile is replaced by a frown, there is a change of direction of the head).

Humour in this comic strip is that the character on the left is excited and proud about his spending. He finds it very easy to rob Peter for Paul.

Comic strips are similar to cartoons. The main difference between a comic strip and a cartoon is that a comic strip consists of more than one frame and these follow on from each other.

• When you next look at cartoons / comic strips, try to decipher the message in the visuals before you read the words and see if you can accurately predict on the situation in the cartoon / comic strip.

Remember that cartoons / comic strips are meant to be enjoyed, so do not lose sight of the humour in the cartoon.
Assessment

Assessment words –

- Identification of visual / verbal clues.

 Learners must **scrutinise / examine** the cartoon / comic strip to look for both visual and verbal clues.

- Mention / compare characters’ tone / mood / feelings.

 Learners must **scrutinise / examine** the cartoon / comic strip to look for both visual and verbal clues; they do this by focussing on the words the characters say to identify the tone, e.g. sarcastic, excited, etc. Learners might also have to compare the tone, mood and feelings of two or more characters.

- Cite a reason for an action.

 Analyse the character’s action and facial expression and suggest a reason for the action.

- Discuss the cartoonist’s intention, e.g. humour / satire / sarcasm / stereotypes.

 Study the cartoon / comic strip and fully explain the writer’s intention in drawing the cartoon / comic strip. Focus on the devices used.

- Give your own opinion / point of view (sympathise / empathise).

 Study or interpret the cartoon / comic strip and give your own opinion about it.

 Take a stance and make a judgement about a character’s behaviour / action / decision.

SAMPLE QUESTIONS

1. **LOW ORDER:** Refer to Frame 1: Give one visual and one verbal clue that indicates that the car owner is satisfied with his achievement / purchase. (2)
 - The man says ‘It’s all good’. ü
 - He looks relaxed with his hands on his hips / a smile on his face. ü

2. **MIDDLE ORDER:** Explain a reason for the cartoonist to use slang words like ‘naw’, ‘dude’, etc. (2)
 - Slang words are used to show that the TWO men are familiar with each other / friends. üü
 - Slang words have been used to emphasise that the man has acted recklessly or made an irresponsible financial decision. üü

3. **Do you think the car owner has made a sound financial decision? Discuss your view.** (3) Opinion, e.g.:
 - Yes.

 The man does not have cash readily available and the only solution would be to get credit. It looks like he always has a back-up plan.

 OR

 - No.

 The man does not realise he will be drowning in debt. The interest paid to the loan-shark is too high. It is also not wise to borrow from one party to pay another and he has borrowed on his credit card to pay the loan-shark.

Presentation slides:
<table>
<thead>
<tr>
<th>Subject</th>
<th>ENGLISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>10</td>
</tr>
<tr>
<td>Topic</td>
<td>POETRY</td>
</tr>
</tbody>
</table>

Lesson – Content:

We should not just focus on the academic analysis of the poem, but also enjoy the poem for what it is and find the beauty in it.

Now we will focus on the academic part.

How do you analyse a poem? There are various methods; however, the SIFTSEI method is one of the most popular. With this method of analysing a poem, we look at the poem in TWO ways: we look at the poem objectively, from the poet’s point of view, and then we look at it subjectively, i.e. how we, the readers, respond to the poem.

Firstly, the SIFT part of the analysis is where we look at the poem objectively, not taking our own response into consideration.

S – Sense: this refers to what the poet is trying to communicate to us. Here we look at the content of each line.

I – Intention: here we try to find out why the poet wrote the poem, i.e. his overall message. We would describe it as the theme of the poem.

F – Feelings: here we try to find out how the poet feels about the subject he is writing about.

T – Tone: we look for the tone of voice that the poet is using. The poet's feelings will give us a clear indication of the tone of the poem. The tone can change or intensify as the poem progresses.

The second part of the analysis is done from the reader’s point of view. Here we look at the SEI part. In this part of the analysis, you may discuss your personal impressions and you do not have to agree with others, as long as you base your response on the poem itself.

S – Sensory impression: all the physical sensations or experiences suggested to us as we read the poem. The poet would have used various images that appeal to the sense of sight, hearing, taste, touch and smell.

E – Emotions: here we must be able to describe our OWN emotional reactions to what we have just read. Do we share the poet’s feelings? Are we also upset or excited?

I – Intellect and imagery: the thoughts and ideas that a word or image prompts in our minds. What do we think about after having read the poem? Poetic devices are looked at here - e.g. rhyme, rhythm, structure, imagery and figures of speech - used by the poet, which all add to the meaning of the poem.

What are figures of speech / literary devices? You would be surprised at how often you use figures of speech, especially similes and metaphors. (Think about some pick-up lines boys use, for example, “You must be a magnet, because I’m attracted to you.”). So they may not be as foreign to you as you might suppose. Figures of speech generally (but not always) involve a comparison of two objects, and we use these to express ourselves in a creative way. In literal language, the words mean exactly what they say. Figurative language, on the other hand, provides a meaning that is different from the literal meaning. Poets use figurative language to add vigour, colour and depth of description to their works.

The structure of a poem is called form. Each form of poetry has its own style. Style refers to the way something is written or said. The purpose of a poem dictates the style to be used. For example, a humorous poem would lend itself to a limerick poetic style, but it would not suit the haiku style of poetry.
<table>
<thead>
<tr>
<th>Pre-activities</th>
<th>Vocabulary / Language used in the Subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Figures of speech help us express the intensity of our feelings, by painting a colourful picture with words. There are many figures of speech, but the most common are the following: simile, metaphor, alliteration and personification.</td>
</tr>
<tr>
<td></td>
<td>Figures of Speech / Literary Devices:</td>
</tr>
<tr>
<td></td>
<td>Alliteration</td>
</tr>
<tr>
<td></td>
<td>Alliteration is the repeated use of a sound (a consonant) at the beginning of closely connected words: e.g. Low lying layer; or, As soft as silk.</td>
</tr>
<tr>
<td></td>
<td>Assonance</td>
</tr>
<tr>
<td></td>
<td>Assonance is the repetition of a particular vowel sound, e.g. ‘The loon in the moon plays a crooning tune’.</td>
</tr>
<tr>
<td></td>
<td>Metaphor</td>
</tr>
<tr>
<td></td>
<td>A metaphor is a figure of speech which makes an implicit, implied or hidden comparison between two things, e.g. “You are my rock”. This metaphor compares a person who provides the speaker with to a rock. A rock is hard to move, implying that the friend is a solid, dependable supporter who is unmoved by circumstances.</td>
</tr>
<tr>
<td></td>
<td>Onomatopoeia</td>
</tr>
<tr>
<td></td>
<td>Onomatopoeia is the use of words to recreate the sounds they describe, like ‘sizzle’ or ‘bang’.</td>
</tr>
<tr>
<td></td>
<td>Personification</td>
</tr>
<tr>
<td></td>
<td>Personification is a way of giving inanimate objects human qualities. E.g.: “Fear knocked on the door. Faith answered. There was no one there.” (proverb)</td>
</tr>
<tr>
<td></td>
<td>Simile</td>
</tr>
<tr>
<td></td>
<td>A simile is when two objects, unlike each other in every respect except one, are compared. A word such as ‘like’ or ‘as’ is generally used to draw attention to the comparison:</td>
</tr>
<tr>
<td></td>
<td>• As alike as two peas in a pod.</td>
</tr>
<tr>
<td></td>
<td>• As clean as a whistle.</td>
</tr>
<tr>
<td></td>
<td>• As delicate as a flower.</td>
</tr>
<tr>
<td></td>
<td>Rhythm</td>
</tr>
<tr>
<td></td>
<td>Rhythm is the musical quality of poetry. A slow rhythm creates a sombre mood in a poem, while a quicker-paced rhythm creates a happier, more exciting mood in a poem.</td>
</tr>
<tr>
<td></td>
<td>Rhyming Couplets</td>
</tr>
<tr>
<td></td>
<td>Rhyming couplets are pairs of rhyming lines. Poems that use rhyming couplets often tell a story.</td>
</tr>
<tr>
<td></td>
<td>As you can see, there are many aspects to poetry, and as you progress through the grades to Grade 12, you will be challenged by many more aspects. It is important for you to always go back to appreciating the poem for what it is - an art form.</td>
</tr>
<tr>
<td></td>
<td>Now that you know a little bit about poetry, let us analyse Sonnet 18: Shall I compare thee to a summer’s day? By William Shakespeare</td>
</tr>
<tr>
<td></td>
<td>Subjects: Life Orientation, History, Religion Studies.</td>
</tr>
</tbody>
</table>
| | **Prediction:** Based on the title, “Shall I compare thee to a summer’s day”, what do you predict is the theme of the sonnet.
During teaching
Introduction of topic:

There are steps that can be followed to answer a poem effectively.

Learning to answer questions based on a poem is a skill that most learners can acquire and improve. Success depends on a careful, thorough and thoughtful approach.

- **Read the poem silently, and slowly, to yourself.** The first time you read through a poem, think in terms of, “How do I feel about this? Why? Why not?” These reactions can help you focus on the type of response the poet is looking for in a reader.

- **Read the poem again and find the literal meaning of the poem.**
 The literal meaning is the most straightforward explanation of the poem. It does not refer to any poetic devices. Translate the poem into conversational English. How would you tell the story in the poem to a friend?

- **Read the poem again to find the connotative meaning of the poem.**
 Analyse the figurative language in the poem.

- **Identify any symbolism in the poem.**
 Think in terms of, “What could this stand for? Why?”

- **Stop and ask yourself, “What is the author trying to say?”** What is his goal for this poem? What kind of reaction is he trying to get out of readers? Why? Try to identify the author’s purpose for writing.

What are the features of a sonnet?

There are fourteen lines in a Shakespearean sonnet. The first twelve lines are divided into three quatrains of four lines each. In the three quatrains, the poet establishes a theme or problem and then resolves it in the final two lines, called the couplet. The rhyme scheme of the quatrains in this poem is **abab cdcd efef**.

Draw your conclusions. What is the theme or goal of the poem? What tools did the poet use to convey the theme or main idea of the poem? How did he / she use them?

Read the poem below:

Sonnet 18

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date:
Sometime too hot the eye of heaven shines,
And often is his gold complexion dimm’d;
And every fair from fair sometime declines,
By chance, or nature’s changing course, untrimm’d:
But thy eternal summer shall not fade,
Nor lose possession of that fair thou ow’st;
Nor shall Death brag thou wander’st in his shade,
When in eternal lines to time thou grow’st:
So long as men can breathe, or eyes can see,
So long lives this, and this gives life to thee.
Sonnet 18 Paraphrased

<table>
<thead>
<tr>
<th>Original Line</th>
<th>Paraphrased Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall I compare thee to a summer's day?</td>
<td>Shall I compare you to a summer's day?</td>
</tr>
<tr>
<td>Thou art more lovely and more temperate:</td>
<td>You are more lovely and more constant:</td>
</tr>
<tr>
<td>Rough winds do shake the darling buds of May,</td>
<td>Rough winds shake the lovely buds that appear in spring (May)</td>
</tr>
<tr>
<td>And summer's lease hath all too short a date:</td>
<td>And summer is far too short:</td>
</tr>
<tr>
<td>Sometime too hot the eye of heaven shines,</td>
<td>At times the sun is too hot,</td>
</tr>
<tr>
<td>And often is his gold complexion dimm'd;</td>
<td>But often it goes behind the clouds;</td>
</tr>
<tr>
<td>And every fair from fair sometime declines,</td>
<td>And everything beautiful will lose its beauty eventually;</td>
</tr>
<tr>
<td>By chance, or nature's changing course, untrimm'd;</td>
<td>By misfortune or by nature's planned out course.</td>
</tr>
<tr>
<td>But thy eternal summer shall not fade</td>
<td>But your youth shall not fade,</td>
</tr>
<tr>
<td>Nor lose possession of that fair thou ow'st;</td>
<td>Nor will you lose the beauty that you possess;</td>
</tr>
<tr>
<td>Nor shall Death brag thou wander'st in his shade,</td>
<td>Nor will death claim you for his own,</td>
</tr>
<tr>
<td>When in eternal lines to time thou grow'st;</td>
<td>Because in my eternal verse you will live forever.</td>
</tr>
<tr>
<td>So long as men can breathe or eyes can see,</td>
<td>So long as there are people on this earth,</td>
</tr>
<tr>
<td>So long lives this and this gives life to thee.</td>
<td>So long will this poem live on, making you immortal.</td>
</tr>
</tbody>
</table>

Discussion and Identification of Figurative Language

Personification: the sun is compared to a person with eyes that shine. It shines from heaven (like someone looking down onto the Earth). At first it would seem that the sun is a friendly person – but the speaker actually suggests that the sun is very, very hot, which can cause major discomfort. Excessive heat exhausts people, and makes them thirsty and uncomfortable.

Metaphor: the sun is compared to ‘the eye of heaven’.

This is a metaphor: the lady is compared to summer. The speaker compliments / flatters her by telling her that her beauty is eternal and, never ending.

Alliteration – f: …fair from fair… This emphasises the fact that everything fades with time.

shall / shade: emphasises the shadows of death, i.e. death’s presence.

Assessment (Consolidation)

1. “Sometime too hot the eye of heaven shines”. What is the poet referring to in these lines? (1)
 ANS: The sun.
2. Explain the metaphor, “And summer’s lease hath all too short a date.” (2)
 ANS: The summer holds a lease on part of the year, but the lease is too short and has an early termination date.
3. The poet compares the young man to summer, but in line 9 the young man is summer. Why does the poet do this? (3)
 ANS: The young man has metamorphosed into the standard by which true beauty can and should be judged. The poet’s friend will become one with nature and time. He is now the standard by which others should be compared. His beauty is eternal like the sun.

Presentation slides

- [POETRY GR 12.pptx](#)
Subject | GEOGRAPHY
---|---
Grade | 10
Topic | Water Resources
Subtopic | Water in the world
Lesson - content | • Different forms of water in the world
| • The hydrological cycle

PRE-ACTIVITIES:

VOCABULARY:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource</td>
<td>Any substance (material) used to supply a need</td>
</tr>
<tr>
<td>Hydrology</td>
<td>The study of water (hydro: water logy: study of)</td>
</tr>
<tr>
<td>Hydrological cycle / Water cycle</td>
<td>The movement of water to and from the oceans, changing its state</td>
</tr>
<tr>
<td>Evaporation</td>
<td>The process involved when water changes to gas (water vapour).</td>
</tr>
<tr>
<td>Transpiration</td>
<td>The process whereby plants release water vapour through their leaves.</td>
</tr>
<tr>
<td>Condensation</td>
<td>The process whereby water vapour changes to liquid form (water).</td>
</tr>
<tr>
<td>Precipitation</td>
<td>The process when water falls clouds as rain, snow or hail onto the surface of the Earth.</td>
</tr>
<tr>
<td>Infiltration</td>
<td>The process whereby water on the surface of the soil enters the soil.</td>
</tr>
<tr>
<td>Run-off</td>
<td>The process when water flows over the surface of the ground.</td>
</tr>
</tbody>
</table>

LANGUAGE USED IN THE SUBJECT GEOGRAPHY:

Forms of water: liquid, solid and gas.
Cycle: events that occur in the same order repeatedly.
The use of –ology and –tion.

DURING TEACHING:

• Introduce the topic by asking learners about forms of water that they know about and examples for each form.

• Give learners an opportunity to perform an experiment of boiling water in a kettle to show how water changes from liquid to gas, and how it condenses and changes from gas to liquid form. Terminology (evaporation, condensation and precipitation) is explained.

• Distribute copies of the hydrologic cycle sketch and the list of processes: Evaporation, Transpiration, Condensation, Precipitation, Infiltration, Run-off.
• Label the form of water in the diagram in each process.
• Explain how each process occurs.
• Learners label processes using the explanations provided and take notes.
• Discuss with the learners what could happen if each process was tampered with.

ASSESSMENT
• Identifying: places where the hydrological processes takes place
• Explaining: processes of water changing its state
• Paragraph writing:
• Predicting: What will happen

Task: Questions

Study the diagram and answer the following questions:
1. Where does the hydrological cycle start? (1 X 1) (1)

2. Which process seen in the diagram occurs when gas changes to liquid? (1 X 1) (1)

3. Study the process “precipitation”. Explain how the process takes place. (2 x 2) (4)

4. Plants are also important in the hydrologic cycle. In a paragraph of not more than SIX lines, predict what will happen with the cycle if the trees were cut down. (3 X 2) (6)

Marking guide

1. In the ocean

2. Condensation

3. The water vapour in the atmosphere condenses to form water droplets / ice. This occurs due to temperature differences between the ocean and the upper atmosphere. Water / ice / vapour in the atmosphere grows to a size that can no longer be held in suspension and it therefore falls down to the surface of the Earth.

4. Transpiration will not take place or it will be lower. This will lower the amount of gas / water vapour released into the upper atmosphere. Precipitation will therefore be less and the Earth will have less water. Plants and people will suffer / die.
Subject: Geography
Topic: Population Geography
Sub-topic: Population Structure
Lesson – content: Population Indicators

Pre-activities:
- Vocabulary: meaning of words and context of use
- **Population**: The total number of persons inhabiting a country, city, or any district or area.
- **Indicators**: Something that provides specific information on the state or condition of something else.

Population indicators:
- **Birth rate**: The number of live births occurring among the population of a given geographical area during a given year, per 1000 people.
- **Death rate**: The number of deaths occurring among the population of a given geographical area during a given year, per 1000 people.
- **Life expectancy**: The average number of years a new-born infant would live, given the patterns of mortality at time of birth.
- **Fertility rate**: The expected number of children a woman will have during her lifetime.
- **Natural increase**: The difference between the number of births and the number of deaths recorded over a period.

During Teaching:
The teacher uses the graphs to indicate and discuss trends with regard to population indicators for South Africa.

Birth Rate: It is affected by factors such as nutrition, fertility, attitude to abortion, labour value of children, government policies, social value, the availability of contraception and culture.

<table>
<thead>
<tr>
<th>Province</th>
<th>2009 N('000)</th>
<th>2014 N('000)</th>
<th>Percentage growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA population</td>
<td>Youth population</td>
<td>SA population</td>
</tr>
<tr>
<td>Western Cape</td>
<td>5 573</td>
<td>1 936</td>
<td>6 130</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>6 490</td>
<td>2 370</td>
<td>6 655</td>
</tr>
<tr>
<td>Northern Cape</td>
<td>1 123</td>
<td>387</td>
<td>1 172</td>
</tr>
<tr>
<td>Free State</td>
<td>2 737</td>
<td>1 015</td>
<td>2 757</td>
</tr>
<tr>
<td>KwaZulu-Natal</td>
<td>10 022</td>
<td>3 688</td>
<td>10 571</td>
</tr>
<tr>
<td>North West</td>
<td>3 401</td>
<td>1 222</td>
<td>3 649</td>
</tr>
<tr>
<td>Gauteng</td>
<td>11 693</td>
<td>4 333</td>
<td>12 996</td>
</tr>
<tr>
<td>Mpumalanga</td>
<td>3 917</td>
<td>1 483</td>
<td>4 181</td>
</tr>
<tr>
<td>Limpopo</td>
<td>5 282</td>
<td>2 031</td>
<td>5 585</td>
</tr>
<tr>
<td>SA</td>
<td>50 222</td>
<td>18 478</td>
<td>53 701</td>
</tr>
</tbody>
</table>

Google image: 24/08/2017
Death Rate: Death rates are affected by disease, war, medical technology, improved health care, transportation development and nutrition.

![Youth: Top eight causes of death - 2008](Image)

Certain infectious and parasitic diseases, External causes of morbidity and mortality, Diseases of the respiratory system, Symptoms and signs not elsewhere classified, Diseases of the blood and immune mechanism, Diseases of the nervous system, Diseases of the circulatory system, Diseases of the digestive system.

Google image: 24/08/2017

Life expectancy declined in South Africa during the period 1980-2012, despite a rise in GDP per capita.

![Life expectancy and GDP per capita](Image)

Life expectancy declined from 52.3 to 51.7 in South Africa during 1992-2005, while per capita income rose.

Google image: 24/08/2017.
Fertility rate: The average number of children a woman has in her lifetime in a country. This obviously depends on religion, culture, social values and economic status.

Natural increase: birth rate minus death rate, calculated as a percentage. (This does not take migration into consideration.)

Notes: Fertility rates have increased at all ages since 2005. However, rates for women under 30 years are still well below the rates experienced during the 1950s. Fertility rates among females under 15 years and over 44 years remain under 1 birth per 1,000 women.

Stats SA

Post-teaching

The teacher assesses the learners at the end of the period with a short class-work activity.

- **Assessment words**

List: To write a series of concise statements; to present a list of names, facts, aspects or items.

Explain: To make clear or plain. To make sure the reader understands what is being said.

Define: To give the precise meaning.
QUESTION 1

1.1. List and explain factors that lead to population growth. (2x2) (4)

1.1.2. Explain how a population grows naturally. (1x2) (2)

1.2. Study Figure 2.1 and answer the questions that follow:

Figure 2.1: Fertility Rate

1.2.1. Define the concept 'fertility rate'. (1x2) (2)

1.2.2. Explain the relationship between the fertility rate amongst people who have no education and those who have a primary level of education in Ethiopia. (2x2) (4)

1.3. Study Figure 1.3 and answer the questions that follow:

Figure 1.3: Life Expectancy

Google image: 23/08/2017

1.3.1. Define the term 'life expectancy'. (1x2) (2)

1.3.2. Explain the life expectancy of females at 6 years and 17 years of age. (2x2) (4)

Grand Total = 18
Marking Guideline

1.1.1. Health factors: Control of diseases, improvement in maternity care, improvement in diet, etc.
 Education factors: female education, female empowerment, tertiary education Social provision

 Cultural factors:
 It grows naturally when the birth rate is higher than the death rate.

1.1.2. It grows naturally when the birth rate is higher than the death rate.

1.2.1. The expected number of children a woman will have during her lifetime.

1.2.2. The relationship is: for those without education, the percent is 5.9; for those with a primary level of education, it is 1.5 percent.

1.3.1. The average number of years that a person may expect to live.

1.3.2. At 6 years it is: 54.7
 At 17 years it is: 66.7

Grand Total = 18
<table>
<thead>
<tr>
<th>Subject:</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic:</td>
<td>Development</td>
</tr>
<tr>
<td>Sub-topic</td>
<td>Framework for development</td>
</tr>
<tr>
<td>Lesson – content</td>
<td>Development model: Free market model, such as Rostow’s model with its limitations and criticisms.</td>
</tr>
</tbody>
</table>

Pre-activities

- **Vocabulary:** meaning of words and context of use

Development: the process in which someone or something grows or changes and becomes more advanced.

Model: a thing used as an example to follow or imitate

Structuralist: a development theory that focuses on structural aspects that impede the economic growth of developing countries. The unit of analysis is the transformation of a country’s economy, mainly from subsistence agriculture to a modern, urbanized manufacturing and service economy.

Limitations: restrictive weakness

Criticism: the analysis and judgement of the merits and faults of a literary or artistic work.

Free market: a system in which the price of goods and services is determined by the open market and consumers, and in which the laws and forces of supply and demand are free of intervention by government, a price-setting monopoly, or other authority.

Economic Growth: an increase in the capacity of an economy to produce goods and services, seen when one period is compared to another.

Mass consumption: The use or purchase of goods or services by many people.

Subsistence farming: Subsistence agriculture is self-sufficiency farming in which farmers focus on growing enough food to feed themselves and their families. A typical subsistence farm has various crops and animals needed by the family to feed and clothe themselves during the year.

Economic take-off: a rapid rise in activity, growth, or popularity.

Very primitive: belonging to a very early period in the development of an animal or plant.

Very limited technology: the branch of knowledge that deals with the creation and use of technical means and their interrelation with life, society, and the environment, and which draws upon such subjects as industrial arts, engineering, applied science, and pure science.

Ruling elite: the social class of a given society that decides and sets that society’s political agenda by mandating that there is one such class in the given society, and then appointing itself as that class.

Specialisation: the process of concentrating on and becoming an expert in a subject or skill.

Commercialisation: the process of managing or running an organisation principally for financial gain.

Investment: the purchase of goods that are not consumed today, but which are used to create wealth in the future.

Exports: send goods or services to another country for sale.

Self-sustaining: a process or system that can continue by itself without anyone or anything else becoming involved.

Urban flight: the process of people leaving the cities and moving to the suburbs.

Rural depopulation: the process in which population density in rural areas decreases over time.
Domestic production: the production of goods for use in the home country.

Import substitution: a trade and economic policy that advocates replacing foreign imports with domestic production.

Service provision: the act of performing a task for a business or person who wants it in exchange for acceptable compensation.

Infrastructure: the basic physical and organizational structures and facilities (e.g., buildings, roads, power supplies) needed for the operation of a society or enterprise.

Consumer durable goods: goods that do not wear out quickly.

Commercial exploitation: a term that includes all activities used to enable one to benefit commercially from one’s property.

Industrialisation: the process by which an economy is transformed from a primarily agricultural base to one based on the manufacturing of goods.

Urbanisation: the process by which towns and cities are formed and become larger as more and more people begin living and working in the central area.

Innovation: the process of translating an idea or invention into goods or services that create value and for which customers will pay.

Economic sector: one classical breakdown of economic activity, which distinguishes three sectors, i.e.: the primary sector, which includes agriculture, mining and other natural resource industries; the secondary sector, which deals with manufacturing, engineering and construction; and; a tertiary sector for the service industries, the quaternary sector for intellectual activities involving education and research and the quinary sector reserved for high level decision makers in government and industry.

During Teaching

The teacher explains Rostow’s five stage model to the learners using Figure 1.1 below.

• The model is one of the more structuralist models of economic growth.
• It was published by the American economist Walt Whitman Rostow in 1960.
• Rostow argued that economic take-off must initially be led by a few individual economic sectors.
• The model postulates that economic growth occurs in five basic stages of varying length.
FIGURE 1.1: ROSTOW’S FIVE STAGES OF DEVELOPMENT

33. Economic Development and Growth

Development: The increase in output per person, involving a significant change (evolution) in society
Growth: Increase in output without change in society

Rostow’s 5 Stages of Economic Growth

- Traditional Society
 - Society is very primitive with very limited technology and a reliance on subsistence farming. People rely on community bartering rather than advanced coinage/banking. Society is governed by a small wealthy ruling elite with strong traditional values.

- Preconditions For Take-Off
 - Citizens see possibilities of improvement. Growing specialisation and commercialisation of skills and investment in infrastructure. Increasing focus on exports (of primary production such as mining and farming) and fuelling investment through surpluses.

- Take Off

- Drive to Maturity
 - Range of domestic production widens – country replaces imports with domestic production (import substitution). Increasing diversification and investment (from home and abroad). Increasing need for innovation for efficiency gains in existing techniques.

- Age of Mass Consumption
 - Economy becomes heavily geared toward service provision (consumer orientation) due to exploiting comparative advantages in trade. High quality world class infrastructure is now in existence. Citizenry demand consumer durable goods.

Source: Google image: 24/08/2017
The teacher discusses the limitations and criticisms of the model with the learners.

Limitations and criticisms of the model:

- **Historical** - the result is known at the outset and is derived from the historical geography of a developed, bureaucratic society.
- **Mechanical** - the underlying motor of change is not disclosed and therefore the stages become little more than a classificatory system based on data from developed countries.
- His model defines the American norm of high mass consumption as integral to the economic development process of all industrialized societies.
- His model assumes the inevitable adoption of neoliberal trade policies, which allow the manufacturing base of a given advanced polity to be relocated to lower-wage regions.
- The model does not apply to Asian and African countries, as events in these countries are not justified in any stage of his model.
- The stages are not properly identifiable, as the conditions of the take-off and pre-take-off stages are very similar and overlap.
- According to Rostow, growth becomes automatic by the time it reaches the maturity stage; but Kuznets asserts that no growth can be automatic - there is always a need for push.
- There are two unrelated theories of take-off: one is that take-off is a sectoral and a non-linear notion, and the other is that it is highly aggregative.
- Assumption - he saw economic progress as a linear system.
- It is false, as evidence is available of many countries making a false start, then reaching a degree of progress and change and then slipping back. For example, Russia slipped back from a high mass consumption to a country in transition, the main cause being the end of the Cold War and geo-political struggles.
- Another problem with Rostow’s work is that it considered large countries with large populations and with natural resources available at just the right time in their history (coal in Northern European countries), or with a large land mass. What about small countries like Japan?
- He has little to say and indeed offers little hope for small countries, such as Rwanda, which do not have such advantages.
- The model does offer hope to much of the world that economic maturity will be achieved and that the age of high mass consumption is nigh.
- But that does leave a sort of “grim meat-hook future” for the outliers, which do not have the resources, political will, or external backing to become competitive.

Post-teaching

Assessment words (list the assessment words and explain them)

- **Discuss** – to examine or investigate the various aspects of a statement by way of an argument.
- **Explain** – to make clear or plain; to make sure the reader understands what is being said.
- **Name** - to state something; to give a name; to mention.

QUESTION 1

1.1. What is a free-market economy? (1 x 2) (2)

1.2. Write a paragraph of not more than six lines to **discuss** why Rostow’s theory has limitations. (3 x 2) (6)

1.3. Can technological transfer or acquisition enable an economy to skip early the stages stipulated by Rostow and still achieve sustainable growth? **Explain** your answer. (2 x 2) (4)

1.4. Name and explain Rostow five stages of development. (5 x 2) (10)

Grand Total = 22
1.1. **Free-market economy**: a system in which the price of goods and services is determined by the open market and consumers, and in which the laws and forces of supply and demand are free of intervention by government, a price-setting monopoly, or other authority. (2x1) = (2)

1.2. Rostow’s theory provides economic progress as a linear system. This is false, as evidence is available of many countries making a false start by reaching a degree of progress and change and then slipping back, e.g. Russia slipped back from a high mass consumption economy to a country in transition, the main cause being the end of the Cold War and geo-political struggles. Another problem with Rostow’s work has is that it only considered large countries with a large population and natural resources available at just the right time in its history (coal in Northern European countries), or with a large land mass, as being the only countries that can develop. What about small countries like Japan?

Furthermore, he has little to say and indeed offers little hope for small countries, such as Rwanda, which do not have such advantages. The model offers hope to much of the world that economic maturity will be reached, while the small countries that do not have resources, political will, or external backing to become competitive, have a bleak future.

In Rostow’s model, growth becomes automatic by the time it reaches the maturity stage; but Kuznets asserts that no growth can be automatic - there is always a need for push. (3x2) = (6)

Yes. There is evidence of many countries making a false start, i.e. reaching a degree of progress and change and then slipping back, e.g. Russia slipped back from high mass consumption to a country in transition, the main cause being the end of the Cold War and geo-political struggles. (2x1) = (2)

1.3.

1.1.2 **Traditional Society**

Society is very primitive, with limited technology and reliance on subsistence farming. People rely on community bartering, rather than the advanced coinage system. Society is governed by a small wealthy ruling elite, who have strong traditional values. (2x1) = (2)

1.1.3 **Pre-conditions to “take-off”**

Citizens see possibilities for improvement. There is growing specialisation and commercialisation of skills and investment infrastructure. (2x1) = (2)

1.1.4 **Take-off**

Economic growth is self-sustaining. Huge technological advancements. Agricultural output increases, as do services. Political modernisation takes off. Urban plight and rural depopulation skyrockets. (2x1) = (2)

1.1.5 **Drive to Maturity**

The range of domestic production widens. The country replaces imports with domestic production. Increasing diversification and investment. It increases the need for innovation for efficiency gains in existing techniques. (2x1) = (2)

1.1.6 **Age of Mass Consumption**

Economy becomes heavily geared toward service provision. High quality world class infrastructure is now in existence and citizenry demand durable consumer goods. (2x1) = (2)

Grand Total = 22
Geography

<table>
<thead>
<tr>
<th>Subject</th>
<th>GEOGRAPHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>11</td>
</tr>
<tr>
<td>Topic</td>
<td>GEOMORPHOLOGY</td>
</tr>
<tr>
<td>Sub-topic</td>
<td>Mass Movements and Human Responses</td>
</tr>
</tbody>
</table>

Lesson – content
- concept of mass movements
- types of mass movements: soil creep, solifluction, landslides, rock falls and mud flows, and slumps
- the impact of mass movements on people and the environment
- strategies to prevent or minimise the effects of mass movement – South African case studies.

PRE-ACTIVITIES:

VOCABULARY: Resultant landforms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass movement</td>
<td>Movement of weathered (broken) material down a slope.</td>
</tr>
<tr>
<td>Soil creep</td>
<td>Slow movement of soil downslope by about 1mm/year.</td>
</tr>
<tr>
<td>Solifluction</td>
<td>Slope movement of saturated (wet) soil at about 5-20cm/year.</td>
</tr>
<tr>
<td>Landslide</td>
<td>When a large land mass breaks loose and plunges (fall from a higher altitude) down a slope.</td>
</tr>
<tr>
<td>Rockfall</td>
<td>Rapid movement of material up a slope exceeding 40°.</td>
</tr>
<tr>
<td>Mudflow</td>
<td>A stream of mud moves down a slope after heavy rain.</td>
</tr>
<tr>
<td>Slump</td>
<td>Downward and outward movement of material along a concave (curves inward) rupture (break) surface.</td>
</tr>
</tbody>
</table>

LANGUAGE USED IN GEOGRAPHY:

- **Impact:** Possible effect - it could be either positive or negative.
- **Strategies:** A plan of action designed to achieve a long-term aim.

DURING TEACHING:

- The teacher gives the glossary of terms and the explanations to the learners.
- Learners use diagrams to identify types of mass movements, as explained by the teacher.

Soil Creep: Figure 1

![Soil Creep Diagram](image-url)
The teacher explains conditions, processes and characteristics of each mass movement.
Mass Movement

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass movement</td>
<td>Another phrase / term is mass wasting: movement of weathered material down a slope</td>
</tr>
<tr>
<td>Soil creep</td>
<td>Slow movement of soil downslope by about 1mm/year</td>
</tr>
<tr>
<td>Solifluction</td>
<td>Slope movement of saturated / waterlogged soil over frozen material. It moves at about 5-20cm/year in cold climates: ice.</td>
</tr>
<tr>
<td>Landslide</td>
<td>When a large land mass breaks loose and plunges down a slope. It moves as a single unit</td>
</tr>
<tr>
<td>Rockfall</td>
<td>Rapid movement of the material of a slope exceeding 40⁰. Can be instant. Most common in cliff faces or very steep slopes of +40⁰.</td>
</tr>
<tr>
<td>Mudflow</td>
<td>A stream of mud moves down a slope after heavy rain. Can move at a speed of 1 to 200km per hour.</td>
</tr>
<tr>
<td>Slump</td>
<td>The downward and outward movement of material along concave rupture surface. These occur along a surface break / rupture that is concave.</td>
</tr>
</tbody>
</table>

Environmental Impacts
- Factor of erosion because it
 - Carries and rolls from high altitude
 - Blocks rivers, damming the water to form lakes
 - Causes destruction of vegetation
 - Causes floods be damming up water
 - Pick up trees and rocks
- Causes destruction of vegetation
- Causes floods be damming up water
- Pick up trees and rocks
- Carries and rolls from high altitude
- Blocks rivers, damming the water to form lakes
- Causes destruction of vegetation
- Causes floods be damming up water
- Pick up trees and rocks

People Impacts
- People might lose their lives
- Long term economic damage to railroads, building structures and underground pipes. Landslides cause loss of productivity of agricultural lands.
- Interruption of transportation systems by landslides causes a loss of industrial productivity
- Road closures force road users to take long detours.

Case Study
The teacher uses a recent South African case study on mass movements and prompts learners to develop strategies to minimize or prevent the effects of mass movement.
- Plant natural vegetation on slopes
- Safety nets to stop rockfalls
- Build drainage and run-off channelling structures to remove excess water
- Build retaining walls
- Fasten unstable rocks with rock bolts.
CAUSE AND MANAGEMENT OF MASS MOVEMENTS

Landslides cause destruction of lives and property and also displacement of large numbers of people. There are instances where whole villages have been totally destroyed by landslides.

Apart from the natural factors, man's unwarranted intervention with the environment by way of deforestation, cultivation on slopes, non-engineered construction, obstructing natural drainage, improper drainage, mining and quarrying causing artificial vibration coupled with continuous heavy rainfall or excessive rainfall, may lead to landslides.

The National Building Research Organisation (NBRO) of Sri Lanka is an institution responsible for giving timely information of an impending landslide. In order to identify landslide-prone areas, a Landslide Hazard Zonation Mapping project is in progress in this country. Research has been undertaken in respect of hydrology, geology, slope and soil types for identification of different hazard potential. The NBRO promotes the following:

- Mapping of the distribution of landslides hazard potential in the highlands of Sri Lanka.
- Introduction of standard guidelines and codes on practices for planning human settlements and infrastructure in the landslide-prone areas.

Landslide occurrences are closely associated with rainfall. Therefore, the Meteorology Department also plays an important role by providing weather-related information.

The NBRO also promotes the creation of public awareness about causative factors of landslides. The factors that should be considered, while being watchful during heavy rainfall, can be summarised as follows:

- Big boulders would start moving.
- Trees would slant towards the slope.
- Cracks would appear on the walls and other structures.
- Springs and water spouts would appear and there will be a rise in the water level.
- The earth itself would show cracks and fractures.
1. Define the term mass movement. (1 x 2) (2)

2. Match the types of mass movement illustrated in sketches (i) and (ii) in Figure 1A with slopes P and Q in Figure 1B. In each case, give ONE reason for your choice. (4 x 2) (8)

3. Identify slopes P and Q in the sketch above. (2 x 2) (4)

4. State the main difference between the two types of mass movement illustrated in sketches (i) and (ii) in Figure 3A. (1 x 2) (2)

5. Poor management of slopes, such as deforestation and poor farming methods, has a detrimental effect on economic activities along these slopes. With reference to the article below and sketch (ii) in Figure 3A, write a paragraph (no more than 12 lines), highlighting man’s contribution to increasing mass movements along slopes, the economic consequences thereof, and what could be done to rectify the problem. (6 x 2) (12)
Answers

1. Bulk movement of material down a slope under the influence of gravity (2) [Concept]
 \[\text{Concept} \times 2 = (2)\]

2. (i) = Q (2)
 Reason: Slope is gentle (2)
 Slow movement (2)
 [Any ONE reason]

 (ii) = P (2)
 Reason: Slope is steep (2)
 Fast movement (2)
 [Any ONE reason]

3. A scarp (P) and a dip (Q) slope
 \[(2 \times 2) = 4\]

4. Speed of the movement of material down the slope (2)
 Volume / quantity of material moving down the slope (2)
 [Any ONE]
 \[\text{Any ONE} \times 2 = (2)\]

5. **Man's contribution:**
 - Deforestation destabilises a slope. (2)
 - Cultivation on slopes destabilises the slopes. (2)
 - Non-engineered construction of roads / railways loosens rock particles. (2)
 - Obstructing natural drainage increases the amount of water in the soil. (2)
 - Improper drainage increases the water in the soil. (2)
 - Mining and quarrying loosens rock particles. (2)

Economic consequences:
- Destruction of settlements (2)
- Destruction of infrastructure (2)
- Railway line blocked (2)
- Goods cannot be transported (2)
- Destruction of cultivated land (2)
- Expensive to rebuild (2)
- Loss of property (2)

Measures:
- Concrete spraying on slopes (2)
- Building tunnel roofs (2)
- Wire mesh (2)
- Gabians (building retaining walls) (2)
- Drilling bolts into the side of a slope to stabilise the slope (2)
- Trigger artificial rockfalls to clear debris (2)
- Reforestation or revegetation (2)
- Putting up wire nets to catch falling rock particles (2)
- Mapping of landslide hazards (2)
- Guidelines for planning human settlements and infrastructure (2)
- Landslide disaster management strategies (2)
- Avoid developing settlements on slopes (2)
- No cultivation on slopes (2)

[Must make at least ONE reference to each of the THREE aspects.]

Single marks only if answered in point form and not in paragraph / essay style

6 x 2 = (12)
Subject: GEOGRAPHY
Grade: 11
Topic: Resources and Sustainability
Sub-topic: Energy management in South Africa

Lesson – content:
- South Africa’s changing energy needs.
- Energy management, towards greener economies and sustainable life styles: responsibilities of governments, businesses and individuals.

PRE-ACTIVITIES:

VOCABULARY: Resultant landforms
- Energy management: Monitoring and control of energy use to ensure efficiency
- Greener economy: Economy aimed at reducing environmental risks (dangers) and ecological scarcity (resource shortages) that aims at sustainable development without degrading the environment.
- Sustainable: Protecting the resource/environment for future usage. It is aimed at reducing the carbon footprint by altering the methods of transport, energy consumption and diet.
- Non-conventional energy: Energy sources that are renewable or inexhaustible and do not cause pollution
- Solar energy: Energy source generated from the sun
- Wind energy: Energy generated by wind power
- Carbon footprint: A measure of the impact our activities have on the environment, and climate change in particular.

LANGUAGE USED IN GEOGRAPHY:

DURING TEACHING:
- Introduce the topic by defining what energy management means and give examples from conventional energy (preceding lesson).
- Learners study the graph below on total carbon emissions.

Each Country’s Share of 2011 Total Carbon Dioxide Emissions from the Consumption of Energy
Teacher facilitates the interpretation and analysis of graphs:
- Reading (direct reading)
- Contribution of each country to the total carbon emission
- Trend in emission in relation to the level of development
- Possible causes of / reasons for such trends

Teacher leads the discussion on how to manage energy in South Africa.

Each learner writes a paragraph on sustainable lifestyles geared towards a greener economy.

Each learner writes an essay on the responsibility of governments, businesses and individuals in terms of energy management.

The best essay should be presented to the SGB / parents.

ASSESSMENT
- Identify: give the essential characteristics
- State: present the information plainly without discussion
- Analyse: examine (something) methodically and in detail, typically in order to explain and interpret it.
- Account: explain the cause of / explain why
- Essay writing

Task (Based on the figures that show countries’ emissions of CO2)
1. According to the bar graph, which country contributes the least?
2. Name the TWO countries with the highest carbon emissions in 2011.
3. Describe the trend in carbon emissions in relation to the country’s level of development.
4. Account for the rate of carbon emissions in South Africa.
5. Write an essay on how the government, businesses and individuals can contribute to a greener economy.
Answers:

1. Poland
2. China and USA
3. More developed countries have higher carbon emissions; less developed countries are associated with lower carbon dioxide emissions.
4. SA still uses conventional energy generated from coal, non-conventional energy steadily introduced. The lifestyles of most citizens are not yet sustainable. An increase in wealth increases consumption. There is a high demand for an increase in energy.
Subject: GEOGRAPHY

<table>
<thead>
<tr>
<th>Grade</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Geomorphology</td>
</tr>
<tr>
<td>Subtopic</td>
<td>Fluvial processes</td>
</tr>
<tr>
<td>Lesson – content</td>
<td>Identification, description and formation of fluvial landforms.</td>
</tr>
</tbody>
</table>

PRE-ACTIVITIES:

VOCABULARY: Resultant landforms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion</td>
<td>The action by which the earth is worn away by water, wind or ice.</td>
</tr>
<tr>
<td>Headward erosion</td>
<td>A river lengthening its course by cutting upstream above its original course.</td>
</tr>
<tr>
<td>Fluvial</td>
<td>Related to rivers / caused by rivers.</td>
</tr>
<tr>
<td>Meander: undercut slope</td>
<td>Occurs when the river winds / bends from one side to the next due to the gentle gradient, which results in undercut (outer) and slip-off (inner) slopes.</td>
</tr>
<tr>
<td>Slip-off slope</td>
<td></td>
</tr>
<tr>
<td>Oxbow lake</td>
<td>An oxbow lake starts out as a curve, or meander, in a river. A lake forms as the river finds a different, shorter, course. The meander becomes an oxbow lake along the side of the river.</td>
</tr>
<tr>
<td>Sand island</td>
<td>Patches of sand / other alluvium exposed above the water in a river</td>
</tr>
<tr>
<td>Braided stream</td>
<td>A river that splits into separate channels as alluvium is deposited.</td>
</tr>
<tr>
<td>Flood-plain</td>
<td>Flat valley floor caused by the deposition of material.</td>
</tr>
<tr>
<td>Natural levee</td>
<td>The raised banks of a river formed when a river floods.</td>
</tr>
<tr>
<td>Waterfall</td>
<td>This forms when a river crosses a layer of resistant rock that dips upstream then flows down a steep gradient.</td>
</tr>
<tr>
<td>Rapid</td>
<td>A resistant layer of rock causes a slight change in the gradient and turbulent flow of the river.</td>
</tr>
<tr>
<td>Delta</td>
<td>It is formed by deposition by a river as it enters the sea / a lake.</td>
</tr>
<tr>
<td>V-shaped river</td>
<td>A river with a steep gradient formed by river erosion.</td>
</tr>
</tbody>
</table>

LANGUAGE USED IN GEOGRAPHY:

- Relief: the highest and the lowest elevation points in an area.
- Spur: the ridges of high ground between individual channels.
- Widening: an increase in stream channel width caused by erosion.
- Deposit: the build-up / addition of sediment, soil and rocks on a landform / land mass or the dropping of eroded material.

DURING TEACHING:

- Introduce the topic by finding out what the learners already know about erosion.
- Ask the learners to read through the section on fluvial landforms in their textbook and identify new words.
- Learners write new words in their books, and the teacher explains the new terms.
- The teacher explains how the fluvial landforms result (explaining the new words) with the aid of pictures / diagrams while learners take notes.
Fig. 1: Fluvial Landforms

How a waterfall results from rapids

Floodplain showing meander landforms

Picture of a sand island
Teacher discusses and gives notes on the uses of different landforms. Erosional landforms: aesthetical / tourist attraction, water source. Depositional landforms: water source, best for agricultural activities.

Using the 1:50 000 topographical maps available at the school, learners should identify the fluvial landforms and discuss the lead to such identifications with assistance from the teacher.

Conditional: The energy of a river / its erosive power depends on the volume of water, gradient and depth of the river. If the energy level is high, the river will have a higher erosive power and carrying capacity.
ASSESSMENT

- Label: give the name of the thing
- Name: provide the name without explanation
- Identify: select and name
- Describe: give a mental picture, e.g. main aspects / characteristics / processes
- Paragraph writing: refining, explaining your ideas in coherent sentences
- Predicting: suggest what will happen / what will be the consequences

Task

Study Fig. 1 below on fluvial landforms then answer the questions that follow.

Label landforms 4, 6 and 10.

1. Explain how landform 8 is formed.
2. What geomorphological name is given to 1?
3. Identify and describe the kind of erosion that will take place at 1.
4. The meandering river winds from 1 side to the next. With the help of a cross section diagram, describe the formation of the slip-off and undercut banks.
5. Discuss two factors that could result in a drainage basin having a high drainage density.
6. In a paragraph of not more than EIGHT lines, explain the negative impact on the farmer if the river breaks through feature 9.
1. 4 waterfall
6 levee
10 delta

2. Feature B: An oxbow lake is formed when more deposition takes place in the inner bend and more erosion takes place on the outer bank. This increases to a point where the neck is cut off from the main stream, creating a U-shaped / crescent-shaped body of water.

3. Source

4. Headward erosion: when the stream lengthens by moving back away from the direction of flow

5. In the bend (B), the water flows faster than at the outer bend (A), so erosion occurs at this point, forming an undercut slope at B. At the inner bend, the speed is slower, so material is deposited there, which forms a slip-off slope (A).

6. An increase in precipitation will increase the number of streams. PP
 Saturated soil increases run-off, and more streams are formed.
 Low permeability results in run-off and the development of streams.
 Sparse vegetation increases run-off and more streams form.
 Steep gradients increase run-off and more streams develop.

7. Cropland is swept away
 Flooding damages crops
 Fertile soil / silt is lost through soil erosion
 The soil becomes over-saturated
 Flooding increases
 Swamp conditions start to develop
 It becomes difficult to contain / control water in the channel
 The soil is no longer suitable for the original crops that were grown
 There is loss of income / employment
 There is shortage of food for the smaller subsistence farmer
Subject: Geography

Topic: Sub-tropical Anti-cyclones and Associated Weather Conditions

Sub-topic: Travelling disturbances associated with anti-cyclonic circulation

Lesson – content

- Moisture front, line thunderstorms, coastal low-pressure systems, South African berg winds

Pre-activities

Vocabulary: meaning of words and context of use

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture front / boundary:</td>
<td>A zone separating warm and dry air masses.</td>
</tr>
<tr>
<td>Moisture:</td>
<td>the amount of water vapour present in the air.</td>
</tr>
<tr>
<td>Front:</td>
<td>an area that separates two air masses.</td>
</tr>
<tr>
<td>Line thunderstorms:</td>
<td>A violent storm or a series of storms of rain and wind believed to take place during the Equinoxes.</td>
</tr>
<tr>
<td>Thunderstorm:</td>
<td>a violent, short-lived weather disturbance that is almost always associated with lightning, thunder, dense clouds, heavy rain or hail, and strong, gusty winds.</td>
</tr>
<tr>
<td>Weather:</td>
<td>the state of the atmosphere at a place and time in terms of heat, cloudiness, dryness, sunshine, wind, rain, etc.</td>
</tr>
<tr>
<td>Equinoxes:</td>
<td>the time or date (twice a year) on which the sun crosses the celestial equator, when day and night are of equal length (about 22 September and 20 March).</td>
</tr>
<tr>
<td>Coastal low-pressure systems:</td>
<td>A coastal low is a shallow low-pressure system that is limited to the lower layers of the Atmosphere. It is formed when the wind blows from the land to the sea, usually during berg wind conditions.</td>
</tr>
<tr>
<td>Coastal:</td>
<td>refers to the boundary between the land and the ocean.</td>
</tr>
<tr>
<td>Low-pressure:</td>
<td>a condition of the atmosphere in which the pressure is below average.</td>
</tr>
<tr>
<td>Berg wind:</td>
<td>a hot dry wind blowing down the Great Escarpment from the high central plateau to the coast.</td>
</tr>
</tbody>
</table>

It comes from the Afrikaans word berg «mountain» + “wind”, i.e. a mountain wind and is the South African name for a katabatic wind: a hot dry wind blowing down the Great Escarpment from the high central plateau to the coast.

A berg wind is a hot, dry wind blowing off the interior plateau of South Africa, roughly at right angles to the coast.

- Kalahari high-pressure cell
- Mid-latitude cyclone
- High-pressure system

Teaching:

Introduction to lesson: Questions based on travelling disturbance

Moisture front

- It develops in summer when the land heats up enough to cause low-pressure cells in the interior of the country.
- It develops where the cool dry air from the South West pushed into the country from the South Atlantic HP meets the warm moist air coming from the North East (South Indian HP). See Figure 1.

Figure 1: Sketch from Telematics 2015
- The cool air lifts the warm air and **line thunderstorms** develop along this front.
- These thunderstorms will form in a line on the north east of the **front** and can extend laterally for hundreds of kilometres.

Weather associated with a line thunderstorm:

They are usually accompanied by strong winds, heavy rain, and sometimes snow, sleet, hail, or, in contrast, no precipitation at all. They occur in association with a type of cloud known as a **cumulonimbus**.

Coastal low-pressure systems

- These develop during summer and winter in South Africa.
- These low-pressure systems cause completely different weather on either side of the pressure cell.
- The air moves in a clockwise direction around the cell.
- On the one side of the pressure cell, air will move from land to the sea and will cause warm, dry and light offshore wind conditions.
- On the other side of the pressure cell, where the air moves from sea to land, moist cloudy and breezy onshore weather conditions will develop, which can lead to rainfall along the coastline (more along the east coast). This is due to a combination of the clockwise airflow around the Coastal Low and its migration from west to east. See the coastal low-pressure cells along the coast of South Africa in Figure 2 below.

Figure 2: Coastal low-pressure systems/cells

![Coastal low-pressure systems](image)

Berg winds

Formation of berg winds:

Berg winds usually **occur in winter**, when there is a low-pressure system along the coastal areas and a high-pressure system over the continent.

Ahead of the mid-latitude cyclone, berg wind conditions occur, as air flows from the Kalahari High-pressure cell to the coastal low-pressure system.
High-pressure and Low-pressure systems develop with the approach of a mid-latitude cyclone. As a result, there is a strong High Pressure over the interior and a low pressure along the coast. The wind blows from the high pressure area to the low pressure area. As the air drops down the escarpment, it heats up adiabatically at 1°C per 100m and becomes drier and hotter. This causes hot, dry uncomfortable conditions that are generally quickly replaced by cold conditions associated with the cold front.

These conditions may cause veld fires.

Characteristics of Berg Winds

It is a warm dry wind at the coast which blows from April to September. Temperatures of 42°C at midday and 36°C at midnight have been recorded in Durban. Berg winds blow from the interior down the escarpment mountains to the coast. See berg wind conditions in the diagram:

Assessment

Question 1

1.1 Refer to the figure below, which shows the formation of a storm line.

Figure 1.1. Line Thunderstorm

Gr.12 Nov. Question Paper, November 2008

1.1.1 What is meant by the term ‘storm line’? (1 x 2) (2)
1.1.2 Describe some of the processes (air movement, influx of air) that lead to line thunderstorms occurring. (3 x 2) (6)
1.1.3 What name is given to the band of low pressure that extends across the South African interior along which line thunderstorms develop? (1 x 2) (2)
1.1.4 Do line thunderstorms develop on the eastern or western side of the band of low pressure mentioned in Question 2.1.3? (1 x 2) (2)
1.1.5 Discuss the consequences of line thunderstorms for farming activities in South Africa’s interior. (2 x 2) (4)
1.2. Study Figure 1.2 and answer the questions that follow:

Figure 1.2 Coastal Low-pressure Cell

1.2.1. What is a coastal low-pressure cell?

1.2.2. Explain the weather conditions associated with a coastal low-pressure cell?

1.3. Study Figure 1.3. and answer the questions that follow:

Figure 1.3

1.3.1 (a) During which season do berg wind conditions prevail in South Africa? (1 x 2) (2)

(b) Describe the cloud cover and temperature conditions that exist during the occurrence of a berg wind. (2 x 2) (4)

(c) Explain why the weather conditions mentioned in Question 1.2.1. (b) exist during the occurrence of a berg wind. (2 x 2) (4)

(d) Name the environmental hazard (danger) that is associated with the development of berg wind conditions. (1 x 2) (2)

(e) Which weather system is responsible for the termination (end) of berg wind conditions? (1 x 2) (2)

TOTAL MARKS = 32
Marking Guideline

1.1.

1.1.1 (a) Late autumn / winter (2) 1x2 = (2)
(b) Clear sky / no clouds / cloud cover 0/8 (2) High temperatures (2) 2x2 = (4)
(c) Air subsides down escarpment / adiabatic heating (2) Subsiding air heats up. (2)
 Subsiding air does not allow for condensation (2) Subsiding air becomes drier. (2)
 [Any TWO] 2x2 = (4)
(d) Veld fires (2) 1x2 = (2)
(e) Mid-latitude cyclone (2) 1x2 = (2)

2.1.

2.1.1. A coastal low is a shallow low-pressure system limited to the lower layers of the Atmosphere; it is formed when
 the wind blows from the land TO the sea. (1x1) (1)

2.1.2. Coastal lows are characterized by a significant change in weather from warm, dry and light offshore wind conditions
to cooler, moist and breezy onshore weather. (2x2) (4)

3.1.

3.1.1 A band of low pressure over land stretching, from the NW to the SE and along which line thunderstorms
 occur (2) [Concept] (1 x 2) (2)

3.1.2 Cold, dry air moves over the country from the SW. (2) Warm, moist air moves over the country from the NE.
 (2) Cold, dry air meets warm, moist air over the interior. (2) Warm moist air is forced to rise rapidly and very high.
 (2) Large scale cooling and condensation results in thunderstorms. (2) [Any THREE] (3 x 2) (6)

3.1.3 Moisture front / Trough line (2) (1 x 2) (2)

3.1.4 Eastern (2) (1 x 2) (2)

3.1.5 Large scale soil erosion. (2) Damage to crops. (2) Damage to livestock. (2) Lightning sets The veld on fire.
 (2) Huge economic losses. (2) It does bring some water to the interior. (2) [Any TWO] (2 x 2) (4)

TOTAL MARK = 37
History

<table>
<thead>
<tr>
<th>Subject:</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade:</td>
<td>10</td>
</tr>
<tr>
<td>Topic:</td>
<td>European Societies</td>
</tr>
<tr>
<td>Lesson – content</td>
<td>How did feudalism affect societies in Europe during the middle ages? - The Black Death</td>
</tr>
</tbody>
</table>

Language aspects covered

Pre-activities
- **Vocabulary**
- **Language used in the subject**
- **Prediction**

Vocabulary: meaning of words and context of use: The Teacher creates an environment for learners to discuss the following terms as a baseline assessment [Recognition of prior learning]:

- **Trade:** The exchange of goods between people.
- **Architecture:** Forms of buildings / structures, e.g. castles.
- **Feudalism:** A system of class distinction.
- **Black Death:** An epidemic that killed people in Europe during the Middle Ages.
- **Renaissance:** A period of re-awakening.

Learners should take note of the action verbs before responding to a question.

Explain the following terms:
- **Explain:** To make an idea or a situation clear to ensure that someone can understand it.
- **Why:** Give a reason for / the cause.
- **Define:** Give a description of (a term or concept).
- **What:** State or list reasons, name, year, etc.
- **Compare:** Examine two different sources to understand how they are similar or different.

During teaching

Introduction of topic:

Introduction: The teacher gives a preview of Europe during the Middle Ages. Europe was isolated, backwards and its influence on the world outside its borders was as yet insignificant.
Main presentation [Note taking]

- There was no political unity.
- There were continual threats from the Vikings and the Ottoman Empire.
- This led to the development of the feudal system.
- The main two features of this system were churches and castles.
- People prayed for protection against invaders.
- Castles were built for protection against invaders.
- It was a system designed for a region that was always at war.
- the educator explains terms like feudal, nobles, lord, knight, peasant
- Explain the timeline of history of Europe from ancient history to modern history and the timeline of events from the fall of Constantinople

In the 14th century, a terrible plague (bubonic plague) hit Europe.

- This plague was called the Black Death.
- It was brought to Europe by trading ships that had been to the Crimea.
- It was caused by germs breeding in the blood of certain fleas.
- In humans, the germs caused haemorrhaging. Dark patches would appear all over the body, the tongue would turn black, and swellings and sores would appear under the arms and in the groin.
- There was no cure. People died quickly.
- The plague resulted in thousands of deaths.
- Some villages were wiped out.
- Britain lost half its population.
- This terrible disease helped the peasants, because it meant more opportunities for them, as fewer people were left alive.
- Those who survived were in a stronger position to sell their labour.
- They could bargain and work in the best conditions offered.
- This was the beginning of the end of the feudal system, as many peasants moved to towns.

<table>
<thead>
<tr>
<th>Assessment Marking Guideline</th>
<th>SOURCE 1 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following source highlights the impact of feudalism in Europe.</td>
<td></td>
</tr>
</tbody>
</table>

The period 410 AD to 1500 AD in Europe is known as the Middle Ages or Medieval Period. Society was characterised by two dominant social forces, namely, the Feudalism and the growth of larger states for protection.

Feudalism was a rural class system based on ownership of large estates. It was a system of economic and social control that divided people into two classes. The nobility (the lords) owned the farms and peasants (serfs) worked on the land. The serfs worked the land without pay, had to give some of their crops to the lord and had to pay taxes to use the lord’s land, mill and oven.

It was characterised by the belief that God’s authority was exercised on Earth through the Pope and the king. The feudal system benefited medieval state because it kept the nobility rich and the peasants poor. The feudal system did not encourage high production, as the peasants had no incentive to produce more. The fall of feudalism was sparked, in part, by noblemen realising that all classes must unite in order to prosper.

There was no political unity in Europe before the fifteen century. There were many small, independent landowners, who were Roman Catholics. Independent landowners united under the control of a king, because of an increased need for protection from common enemies.

From ‘In Search of History’
<table>
<thead>
<tr>
<th>Study Source 1A to answer the following questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 According to the source, which period is classified as the Middle Ages? 1 x 2 (2)</td>
</tr>
<tr>
<td>1.1.2 What do you understand by the term Feudalism? 1 x 2 (2)</td>
</tr>
<tr>
<td>1.1.3 Use the source and your own knowledge to give a reason for the failure of the feudal system in Europe. 2 x 2 (4)</td>
</tr>
</tbody>
</table>

Marking memorandum

<table>
<thead>
<tr>
<th>1.1.1 [Extraction of information from the source]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• From 1410 AD to 1500 AD 1 x 2 (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1.2 [Explanation of a concept – L1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Feudalism: A system of class distinction (land owners and tenants) 1 x 2 (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1.3 [Interpretation of information from the source – L2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The feudal system did not encourage high production as the peasants had no incentive to produce more</td>
</tr>
<tr>
<td>• There was no political unity in Europe before the fifteen century</td>
</tr>
<tr>
<td>• Any other relevant response 2 x 2 (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject: HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic: The world in 1600</td>
</tr>
<tr>
<td>Lesson – Content: Songhai - an African Empire in the 15th and 16th century</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language aspects covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-activities</td>
</tr>
<tr>
<td>• Vocabulary</td>
</tr>
<tr>
<td>• Language used in the subject</td>
</tr>
<tr>
<td>• Prediction</td>
</tr>
<tr>
<td>• Vocabulary: meaning of words and context of use: The Teacher explains the following terms in detail:</td>
</tr>
<tr>
<td>Empire: a state that is ruled by an Emperor.</td>
</tr>
<tr>
<td>Expansion: a powerful state that increases its territory by over-powering an inferior state.</td>
</tr>
<tr>
<td>Feudalism: a system of class distinction.</td>
</tr>
<tr>
<td>Tyrant: a cruel ruler / one who rules with an iron fist.</td>
</tr>
<tr>
<td>• Learners should take note of action verbs used in the formulation of essay questions, e.g. A learner should take a stance by agreeing or disagreeing …</td>
</tr>
<tr>
<td>• Explain to what extent: Learners should view both options and make a decision as to which one was more / less successful than the other.</td>
</tr>
<tr>
<td>• Critically discuss: Look carefully at both sides and further clarify both sides of the topic under discussion. / Critically refer to both the positives and the negatives of the topic under discussion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>During teaching Introduction of topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Songhai was a West African empire that rose to prominence after the decline of the Mali empire. It became known for its wealth and learning.</td>
</tr>
<tr>
<td>• It became very powerful because of its strong army, mineral wealth, rich agriculture and fishing.</td>
</tr>
<tr>
<td>• Its most important rulers were Sunni Ali the Great (1464-1492) and Muhammad Ture (1493-1528).</td>
</tr>
<tr>
<td>• Sunni Ali was the founder of the Songhai Empire and he excelled in creating a strong army and forging unity in government and empire.</td>
</tr>
<tr>
<td>• Muhammad Ture excelled in promoting trade, culture and learning.</td>
</tr>
<tr>
<td>• The rulers of Songhai were hereditary tyrants.</td>
</tr>
</tbody>
</table>
The educator explains Sunni’s style of governing, his attitude to religious worship and how he allowed all individuals to prove their worth.

Compare the Songhai with the Ming Dynasty; unlike the Ming Dynasty, Sunni Ali kept slaves.

Sunni Ali the Great:
- Supporters of Sunni Ali who benefited from his rule would have thought he was great because: He controlled a vast empire.
- He generated great wealth through trade.
- He encouraged religious tolerance.
- He encouraged military promotion based on merit.
- He inspired confidence.

Sunni Ali the Great Oppressor:
People regarded Sunni Ali as a great oppressor because:
- He was a powerful military ruler / tyrant.
- He put governors loyal to him in charge of the provinces and ignored / got rid of local leaders.
- He did not encourage scholarship in Timbuktu.
- Islamic leaders (ulama) did not approve of religious tolerance.
- They favoured a state based on Islamic law.
- They wanted to play a greater role in the running of the country.

Assessment Marking Guideline

Explain to what extent the rise of Sunni Ali transformed (changed) Songhai into a powerful empire. [50]

Synopsis: Learners are expected to explain to what extent the rise of Sunni Ali transformed (changed) Songhai into a powerful Empire

Main Aspects:

Introduction: Learners should take a stance, and support it, on the extent to which Sunni Ali transformed (changed) Songhai into a powerful Empire.

Elaboration:

[Learners should make use of the PEEL method in developing and sustaining their line of argument,]

- Excelled in creating a strong army and forging unity in government and empire. Educator explains Sunni’s style of governing, his attitude to religious worship and how he allowed all individuals to prove their worth.
- Muhammad Ture excelled at promoting trade, culture and learning.
- The rulers of Songhai were hereditary tyrants.
- Compare the Songhai with the Ming: unlike the Ming Dynasty, Sunni Ali kept slaves.
- He generated great wealth through trade.
- He encouraged religious tolerance.
- He encouraged military promotion based on merit.
- He inspired confidence.
- He was a powerful military ruler / tyrant.
- He put governors loyal to him in charge of the provinces and ignored / got rid of local leaders.
- He did not encourage scholarship in Timbuktu.
- Islamic leaders (ulama) did not approve of religious tolerance.
- The ulama favoured a state based on Islamic law.
- The ulama wanted to play a greater role in the running of the country.

Conclusion: Learners should tie up their argument with a relevant conclusion.
Subject
History Grade 11 (Paper 2)

Topic
Nationalism – South Africa

Lesson – content
How did Afrikaner nationalism grow in South Africa? (Essay lesson)

Language aspects covered

Pre-activities
- **Vocabulary**
- **Language used in the subject**
- **Prediction**

Vocabulary: meaning of words and context of use: [Recognition of prior knowledge]
- The teacher (orally) test learners’ pre-knowledge of the following concepts / terms: Nationalism - derived from nation; Great Trek; Centenary celebration.
- Providing a scenario of a family or community can give learners a clue of what to expect and will prepare them to understand nationalism.

During teaching
Introduction of topic:

- Introduction: The teacher should unpack these concepts / terms:
 - Great Trek: the movement by many Voortrekkers from the Cape to the interior for occupation of land and self-rule.
 - Voortrekkers: The first group of Afrikaners who moved from the Cape to the interior for self-rule away from British colonial control.
 - Nationalism: a sense of belonging together of people sharing a common identity through aspects such as culture, language, etc.
 - Centenary celebration: centenary refers to a period of 100 years. Centenary celebration refers to a celebration that occurred 100 years (in 1938) after the Great Trek took place (in 1838).
 - Segregation: A policy of separating people because they come from different races or tribal groups; in this case, a policy practised by Afrikaners to exclude, undermine and oppress other racial groups.
- The main presentation (in the form of an illustration / mind map) is provided below.

![Afrikaner Nationalism Mind Map](image-url)
Assessment

Marking Guideline

Explain to what extent various Afrikaner structures contributed to the rise of Afrikaner Nationalism.

Introduction: Learners should take a stance and explain the extent to which various Afrikaner structures contributed to the rise of Afrikaner Nationalism.

Main Aspects: Learners should make use of the PEEL method in developing and sustaining their line of argument.

- Afrikaner Broederbond
- Afrikaans Language Movement
- Afrikaans print media
- Dutch Reformed Church
- FAK (Die Federasie van Afrikaanse Kultuurvereniginge)
- Reeddingsdaadbond
- Conclusion: Learners should tie up their argument with a relevant conclusion

Subject: History Grade 11 (PAPER 2)

Topic: Apartheid in SOUTH AFRICA - 1940s TO 1960s

Lesson – content

What was the nature of internal resistance to apartheid in South Africa before 1960? (source-based lesson)

Pre-activities

- Vocabulary
- Language used in the subject
- Prediction

Vocabulary: meaning of words and context of use:

- **Recognition of prior knowledge:** The teacher tests learners’ pre-knowledge orally, by asking if they have ever written a list of complaints / demands to any level of authority. The explanation of the terms / concepts should be in the context of internal resistance in SA before 1960.
 - Grievances (list of complaints against some form of authority, which should be addressed)
 - Petition (demands submitted to an authority for implementation)
 - Delegation (a group of people sent to the authority to submit or present the concerns of a bigger group)
 - Defiance as in defiance campaign (intentionally do the opposite of what should be done, with the fully understanding of the result thereof)

- Learners should take note of action verbs before responding to a question, e.g. Explain the term; Explain why; Define; What do you understand by; Compare; etc.

During teaching

Lesson presentation

Main presentation: [Note taking]

- Non-violent forms of resistance:
 - Petitions
 - Delegation (1914 – 1916) – after the 1913 Land Act
 - Defiance campaign (1952)
 - Marches, e.g. leading to the Sharpeville massacre (1960)

- Resistance becoming violent:
 - Programme of Action (1944)
 - Armed conflict (1960 – after Sharpeville massacre)
 - Rivonia Trial
WHAT LED TO THE SHARPEVILLE MASSACRE?

SOURCE 1A (READ)

This source, from the *Sunday Nation of Nairobi* (22 February 1976), sheds light on the Sharpeville massacre (21 March 1960).

On the eve of the march, Sobukwe in his speech said: “Sons and daughters of the Soil, Remember Africa! ... The step we are taking is historical, pregnant with untold possibilities. We must, therefore, appreciate our role. We must appreciate our responsibility. The African people have entrusted their whole future to us. And we have sworn that we are leading them, not to death, but to life abundant. My instructions, therefore, are that our people must be taught NOW and CONTINUOUSLY THAT IN THIS CAMPAIGN we are going to observe ABSOLUTE NON-VIOLENCE!”

(In the morning of the day of the march) ... the PAC task force members started out before the break of dawn lining up marchers in street after street ... In line with the instruction of the Party leadership, when all the groups had been assembled, the 10,000 and more men, women and children proceeded to the local police station - chanting freedom songs and calling out campaign slogans “Izwe lethu” (Our land); “I Africa”; “Awaphele amapasti” (Down with passes); “Sobukwe Sikhokhele” (Lead us Sobukwe); “Forward to Independence, Tomorrow the United States of Africa”; and so on and so forth.

When the marchers reached the Sharpeville police station, a heavy contingent of police was lined up outside, many on top of British-made Saracen armoured cars ... The chanting of freedom songs was picking up and the slogans were repeated at greater volume ... But shortly after the PAC branch leaders had been let through into the police station, without warning, the police facing the crowd opened fire and in two minutes hundreds of bodies lay sprawled on the ground like debris. The joyful singing had given way to murderous gunfire, and the gunfire was followed by an authentic deadly silence, and then screams - wild screams - and cries from the wounded.

Littering the ground in front of the police station and in nearby dusty streets were 69 dead and nearly 200 injured men, women and children - a revolting sight that appalled decent human beings the world over, as pictures of the massacre spread around the world.

SOURCE 1B (VIEW)

This photograph depicts the crowd running away on the day of the Sharpeville massacre (21 March 1960) as the policemen started shooting at them.
Dr Verwoerd, the Prime Minister, making a further statement about the riots, said the latest information was that 49 Bantus were killed and 156 wounded in the disturbances at Sharpeville Bantu Township near Vereeniging.

... At Sharpeville, Colonel Pienaar, in command of the police there, had to force his way through a crowd of about 20,000 Bantu who had surrounded the police station.

... Stones rained on the police and the mob advanced on them. Colonel Pienaar then gave orders for the police to load. At that moment three shots were fired at the police from within the Bantu crowd. The shouting crowd advanced and the police fired a volley with stun guns and 303s, without the order being given to fire.

... He regretted that the effect of all the propaganda of the past years had brought the government’s handling of Bantu affairs under suspicion and these people had now been instigated to try the impossible and challenge the authority of the state.

SOURCE 1D (READ)

This source elaborates on the impact of the Sharpeville massacre after March 1960.
This massacre created a crisis for the apartheid government, both inside the country and internationally. The government immediately declared a State of Emergency and banned political meetings. Within less than a month, it banned both the Pan Africanist Congress, which had organized the action in Sharpeville, and the African National Congress. After lengthy internal discussions, the ANC and PAC turned to armed struggle and went underground.

- Use Source 1A and your own knowledge to explain the concept non-violence. 1 x 2 (2)
- According to Source 1B, the police force opened fire without warning. What does this imply? 1 x 2 (2)
- Explain how useful Source 1A could be to a historian doing research on the Sharpeville massacre. 2 x 2 (4)
- Refer to sources 1A and 1B. Explain how the two sources support each other regarding the action of the police officials. 2 x 2 (4)
- Using information from relevant sources and your own knowledge, explain circumstances that led to the Sharpeville massacre. (8)

1. [Explanation of a historical concept in Source 1A – L1]
 A peaceful process or march that does not involve harm, in this case a peaceful march against pass laws. (1 x 2) (2)

2. [Interpretation of information from Source 1B – L2]
 They were violent; police brutality; disregard for human rights (1 x 2) (2)

3. [Evaluation of usefulness of Source 1A – L3]
 - It provides the exact words used by the leader of the PAC, R Sobukwe, who played a leadership role in the march.
 - It elaborates on the slogans chanted during the march.
 - It reflects the incident as it happened.
 - Any other relevant response. (2 x 2) (4)

4. [Comparison of Sources 1A and 1B – L3]
 - Source 1A refers to police on top British Saracens, while Source 1B shows police on top of British Saracens and in a good position to can take aim at the marchers.
 - Source 1A mentions police lining up and opening fire without warning, while Source 1B shows marchers running away after police had opened fire on them.
 - Any other relevant response. (2 x 2) (4)

5. [Analysis and evaluation of information from Sources – L3]
 - Dissatisfaction of Africans (blacks) about apartheid laws. (Own knowledge)
 - Protest by Africans in Sharpeville against Pass Laws. (Source 1A)
 - Demonstrations through burning their ID books. (Source 1A)
 - Marching to the police station. (Source 1A)
 - Brutality by the police. (Source 1A and 1B)
 - Fear or inexperience by the police / police inconsiderate. (own knowledge)
 - Any other relevant response. (8)
Pre-activities

- **Vocabulary: meaning of words and context of use:** The teacher tests the learners’ pre-knowledge by allowing them to discuss (in groups) their understanding of the following concepts.
- **Communism:** An ideology that is aimed at establishing a moneyless and classless society based on communal ownership of the means of production - services and property.
- **Socialism:** According to Marxist theory, the phase that is implemented after capitalism on the way to communism. It is a system of ownership and control of the means of production being in the hands of the community.
- **Soviet:** A workers’ council; a citizen of the Soviet Union (USSR) after 1923.
- **Collectivization:** A policy of consolidating individual ownership of land into large collective or communal farms.
- **Gosplan:** The State Planning Commission in Russia that formulated the Five-Year Plans to solve Russia’s economic problems.
- Learners should take note of the action verbs before responding to questions, e.g. A learner should take a stance by agreeing or disagreeing.
- **Explain to what extent -** Learners should view both options and make a decision as to which one was more / less successful than the other.
- **Critically discuss -** Look carefully at both sides and further clarify both sides of the topic under discussion. / Critically refer to both the positives and the negatives of the topic under discussion.

During teaching

Introduction

Stalin’s interpretation of Marxism-Leninism

- The teacher should highlight leadership under Lenin so that they anticipate (predict) leadership under Stalin.
- Marx and Lenin believed that communism must serve the people. Under Stalin, the people served communism.
- Under Stalin, people's needs were sacrificed for the needs of the state.

Stalin’s First Five-Year Plan: Collectivization

- **Industrialisation**
- **Collectivization of agriculture.**
- **Gosplan,** the state planning agency, drew up targets for production for each factory. The first two plans concentrated on improving heavy industry, i.e. coal, oil, steel and electricity.
- The First Five-Year Plan called for transforming Soviet agriculture from predominantly individual farms into a system of large state collective farms.
- The anticipated surplus was supposed to pay for industrialization. Collectivization was further expected to free up many peasants for industrial work in the cities and to enable the party to extend its political dominance over the remaining peasantry.
- Stalin focused particular hostility on the wealthier peasants, or kulaks. About one million kulak households (some five million people) were deported and never heard from again.
- Forced collectivization of the remaining peasants, which was often fiercely resisted, resulted in the disastrous disruption of agricultural productivity and a catastrophic famine in 1932-33.
- Although the First Five-Year Plan called for the collectivization of only twenty percent of peasant households, by 1940, approximately ninety-seven percent of all peasant households had been collectivized and private ownership of property had been eliminated almost entirely.
<table>
<thead>
<tr>
<th>Assessment Marking Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain to what extent Stalin succeeded in transforming Russia from a backward agricultural state into a modern industrial state. [50]</td>
</tr>
</tbody>
</table>

COMMUNISM IN RUSSIA 1900-1940

SYNOPSIS
Candidates should indicate the extent, whether greater or lesser, to which Stalin succeeded in modernising Russia. The content focus must be on economic development and planning under Stalin and the impact thereof on Russia. Having taken a stand, the candidate must maintain a clear line of argument in support of the viewpoint taken.

MAIN ASPECTS

INTRODUCTION
- The candidate should take a stance and indicate how he / she will support it. It should focus on Stalin’s efforts to consolidate communism in Russia and the modernisation and economic development of Russia through the Five-Year Plan Programme.

ELABORATION
- Election of Stalin as the leader of Russia after Lenin
- Stalin’s opposition to the NEP – withdrawal of the NEP
- Stalin’s objectives – Economic Development and Planning
- First Five-Year Plan
- Industrialisation
- Collectivisation (Agriculture)
- Mining
- Role of Gosplan
- Closed nature of Russian society
- Any other relevant response

CONCLUSION
Candidates should tie up the argument with a relevant conclusion that is in keeping with the line of argument. [50]

<table>
<thead>
<tr>
<th>Subject:</th>
<th>History GR 12 (PAPER 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic:</td>
<td>What was the nature of civil society resistance after THE 1960s?</td>
</tr>
<tr>
<td>Lesson – content</td>
<td>What was the impact of the international response to apartheid in South Africa?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language aspects covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-activities:</td>
</tr>
<tr>
<td>- Vocabulary</td>
</tr>
<tr>
<td>- Language used in the subject</td>
</tr>
<tr>
<td>- Prediction</td>
</tr>
<tr>
<td>- International Response to Apartheid by the Anti-Apartheid Movements from Britain, Ireland and other Western European countries</td>
</tr>
<tr>
<td>- Vocabulary: meaning of words and context of use:</td>
</tr>
<tr>
<td>o The explanation of the terms / concepts should be in the context of historical developments in the international response to Apartheid.</td>
</tr>
<tr>
<td>o Apartheid: A policy used by the National Party government to separate people in South Africa according to race group using legislation.</td>
</tr>
<tr>
<td>o Internal resistance: resistance to the policy of Apartheid in SA by organisations within the country.</td>
</tr>
<tr>
<td>o External resistance: resistance to the policy of apartheid by anti-Apartheid movements and frontline states that were operating from outside the country.</td>
</tr>
<tr>
<td>- Learners should take note of action verbs used in the formulation of essay questions, e.g. A learner should take a stance by agreeing or disagreeing;</td>
</tr>
<tr>
<td>- Explain to what extent: Learners should consider both options and make a decision as to whether or not the international response was influential in dismantling apartheid.</td>
</tr>
<tr>
<td>- Critically discuss: Look carefully at both sides and further clarify on both sides of the topic under discussion / critically refer to both the positives and the negatives of the topic under discussion.</td>
</tr>
</tbody>
</table>
During teaching
Introduction of topic:

Lesson presentation

Background information:
• The teacher should introduce the topic by making reference to:
 • Why Apartheid was not accepted by the majority of people in South Africa.
 • Internal resistance to Apartheid.
 • South Africans living in exile because of Apartheid.

Main Presentation / body of lesson

• The teacher should introduce terms / concepts relevant to the topic to unlock learners’ understanding on the content focus: (sanctions, disinvestment, boycott, Release Mandela Campaign, etc.)

• The teacher should clarify the context of international resistance to Apartheid

• Sports boycott: International sporting federations preventing Apartheid South Africa from participating in their activities:
 o Basil D’Oliveira incident.
 o The all-white SA rugby tour of Britain & Ireland (1969 – 70).
 o The all-white SA cricket tour, 1970.
 o In 1980, the UN compiled a ‘Register of Sports Contacts with South Africa’.
 o Athlete, Zola Budd’s UK nationality application fast-tracked for the 1984 Summer Olympics.
 o Cricketer, Kepler Wessels acquired Australian eligibility in the 1980s through residency.
 o In 1985, the UN Gen Assembly adopted the International Convention Against Apartheid in Sports on 10 Dec.

• Cultural boycott:
 o In 1961, the British Musicians Union adopted a policy decision that its members should not perform in South Africa as long as Apartheid exists.
 o In 1963, 45 prominent British playwrights signed a declaration denouncing their performing in any country where there was discrimination.
 o The UN Special Committee Against Apartheid compiled a list of musicians who undermined the cultural boycott in 1980, e.g. Millie Jackson (1980) and Frank Sinatra (1981).

• Academic boycott: Scholars refusing to collaborate with SA scholars on research; Publishers, journals refusing to publish SA experiments; International conferences refusing to include SA scholars; etc.

• Consumer boycott: It started as a Boycott Movement in 1959 to persuade shoppers to boycott apartheid goods; It supported a call by Chief A Luthuli’s for an international boycott of South African products; Boycott Movement leaflets listed SA products, e.g. Craven A cigarettes; Between 1983 and 1986 British imports on SA textiles & clothing fell by 35%; When PM Thatcher undermined international sanctions, the AAM called for ‘people’s sanctions’ through the 1989 Boycott Bandwagon (converted double-decker bus).

• Disinvestment: In 1962, the UN Gen Assembly passed Resolution 1761 that established the UN Special Committee Against Apartheid. It was opposed by Western nations, but the AAM used it to call for the International Conference for Eco Sanctions Against SA in 1964.
 o Barclays Bank & General Motors, 1986.

• Sanctions: covered trade & finance; import / export sanctions.

• Release Mandela campaign: It was started in the Netherlands in 1980 by Dutch AAM using leaflets & signatures.
Assessment Guideline

In the form of an essay, e.g.: Critically discuss the contribution of various forms of protest by the international community in bringing Apartheid to an end.

[Learners are expected to indicate the contribution on the AAMs; the unwillingness by some leaders of international countries and the impact of both to putting pressure to the apartheid government to end their racist ideology.]

Synopsis: Learners are expected to critically discuss the contribution of the anti-Apartheid movements to the demise of Apartheid in South Africa

Main Aspects:

Introduction: Learners should outline the various forms of protest and indicate how they had an impact on the demise of Apartheid in South Africa. Reference should also be made to international governments that were not supportive of the AAMs.

Main Aspects: Learners should make use of the PEEL method in the development and sustaining their line of argument:

- Sports boycott
- Cultural boycott
- Academic boycott
- Disinvestment
- Sanctions
- Consumer boycotts
- Release Mandela campaign

Conclusion: Learners should tie up their line of argument with a relevant conclusion.

Subject: History GR 12 (Paper 1)

Topic: Cold war: Extension of the cold war

Lesson – content

What was the impact of Mao Zedong’s policies on the People’s Republic of China?

Language aspects covered

Pre-activities

- Vocabulary
- Language used in the subject
- Prediction

- **Vocabulary: meaning of words and context of use:** The teacher tests learners’ pre-knowledge of the following concepts / terms:
 - Capitalism vs Communism: Rival ideologies, one Western and the other Eastern, led by the USA and the Soviet Union respectively. Capitalism has making money and profit (individually) as its economic policy, while Communism advocates that wealth should be under the control of the state.
 - Revolution: replacing one form of government with another by sudden change, i.e. the forceful take-over of a government.
 - Civil War: a war involving people (civilians) in the same country, who are influenced by different ideologies or tribal beliefs.
 - Cold War: an ideological war, mainly between proponents of Capitalism and Communism, in which the affected countries are not directly involved – but use other countries instead
 - Propaganda: False information deliberately spread by a government / company / group to win public support or to discredit its opponent.

- Learners should take note of the action verb before responding to a question, e.g. A learner should take a stance by agreeing or disagreeing.

- **Explain to what extent:** Learners should view both options and decide which one was more / less successful than the other.

- **Critically discuss:** Look carefully at both sides and further clarify both sides of the topic under discussion. / Critically refer to both the positives and the negatives of the topic under discussion.
During teaching

Introduction of topic:

Lesson presentation [Note taking]

Background information:
- The teacher should introduce the topic by making reference to the Civil War between the Nationalists / Capitalists & the Communists.
- Chiang Kai Shek (Nationalists) vs Mao ZeDong (Communists).
- The take-over by the Communists in 1949.
- Land Reform; the First 5-Year Plan (1953 – 1957); the 100 Flowers Campaign (1956).

Main Presentation / body of a lesson
- Reasons why the Great Leap Forward is regarded as a failure:
 - System of industrialisation introduced (backyard factories)
 - Unskilled labour (lack of skills) in industries
 - Poor quality of industrial production
 - Poor management & corruption in collectivised farms
 - High taxation of peasants
 - Starvation / hunger of millions because of poor production in farming & famine (drought) - about 20 million killed
 - Mao ZeDong resigned as head of state in 1959. (He was replaced by a moderate - Liu Shao-qi). Mao remained chairperson of the Communist Party.
- Some successes achieved by the Great Leap Forward:
 - Improvement in the standard of social wellbeing
 - Recognition of women

The Cultural Revolution:
- Reinforced Communist principles
- Reclaimed authority
- Use of the Red Guards to eliminate opposition
- The Little Red Book
- Attacking the FOUR Olds
- The Purges
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Marking Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>In essay form, e.g.: Explain whether the Great Leap Forward was able to transform (change) China into a world power.</td>
<td></td>
</tr>
<tr>
<td>[Learners should state that, to a large extent, the Great Leap Forward was unable to transform China into a competitive world power.]</td>
<td></td>
</tr>
<tr>
<td>Synopsis: Learners are expected to explain whether the Great Leap Forward was able to transform (change) China to become a world power.</td>
<td></td>
</tr>
<tr>
<td>Introduction: Learners should take a stance and outline whether or not the Great Leap Forward was able to transform (change) China to become a world power.</td>
<td></td>
</tr>
<tr>
<td>Main Aspects: Learners should make use of the PEEL method in the development and sustaining their line of argument.</td>
<td></td>
</tr>
<tr>
<td>o Reasons the Great Leap Forward is regarded as a failure:</td>
<td></td>
</tr>
<tr>
<td>o System of industrialisation introduced (backyard factories)</td>
<td></td>
</tr>
<tr>
<td>o Unskilled labour (lack of skills) in industries</td>
<td></td>
</tr>
<tr>
<td>o Poor quality of industrial production</td>
<td></td>
</tr>
<tr>
<td>o Poor management & corruption in collectivised farms</td>
<td></td>
</tr>
<tr>
<td>o High taxation of peasants</td>
<td></td>
</tr>
<tr>
<td>o Starvation / hunger of millions because of poor production in farming & famine (drought) - about 20 million killed</td>
<td></td>
</tr>
<tr>
<td>o Mao ZeDong resigned as head of state in 1959. (He was replaced by a moderate - Liu Shao-qi.) Mao remained chairperson of the Communist Party.</td>
<td></td>
</tr>
<tr>
<td>The Cultural Revolution:</td>
<td></td>
</tr>
<tr>
<td>o Reinforced Communist principles</td>
<td></td>
</tr>
<tr>
<td>o Reclaimed authority</td>
<td></td>
</tr>
<tr>
<td>o Made use of the Red Guards to eliminate opposition</td>
<td></td>
</tr>
<tr>
<td>o The Little Red Book</td>
<td></td>
</tr>
<tr>
<td>o Attacking the FOUR olds</td>
<td></td>
</tr>
<tr>
<td>o The Purges</td>
<td></td>
</tr>
<tr>
<td>Conclusion: Learners should tie up their argument with a relevant conclusion.</td>
<td></td>
</tr>
<tr>
<td>Subject:</td>
<td>History (Paper 2)</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Topic:</td>
<td>How did SA come to terms with its apartheid past?</td>
</tr>
<tr>
<td>Lesson – content:</td>
<td>The TRC: Dealing with the injustices of the past</td>
</tr>
</tbody>
</table>

Language aspects covered

Pre-activities
- Vocabulary
- Language used in the subject
- Prediction

Truth and Reconciliation Commission (TRC)
A body set up by the government in 1995 to investigate violations of human rights committed under apartheid.

Vocabulary: meaning of words and context of use:

- **Reconciliation**: it comes from the word reconcile and means bringing former enemies (perpetrators & victims) together to promote openness and forgiveness for a new democratic SA.
- **Commission(s)** (Committee(s) or a body of people given authority to unearth truth for reconciliation - in this case THREE Commissions for the TRC.
- **Reparation / compensation**: payment made to victims who had suffered loss due to human rights violations by the Apartheid system.
- **Amnesty**: Official forgiveness granted to those who publicly told the truth about human rights offences committed during Apartheid.
- **Perpetrators**: people who violated the human rights of others under the pretext of the Apartheid system.
- **Victims**: people whose human rights were violated because of the Apartheid system.
- **Restorative vs Retributive justice**: justice for healing & reconciliation (restorative) instead of for revenge (retributive)

Learners should take note of the action verbs before responding to a question.

Explain the following terms:
- **Explain**: To make an idea or a situation clear for someone to understand.
- **Why**: Give a reason for a cause.
- **Define**: Give a description of (a term or concept).
- **What**: State or list reasons, name, year, etc.
- **Compare**: Examine two different sources to see or understand how they are similar or different.
Lesson presentation

- Introduction: The teacher should unpack these concepts/ terms to unlock content on the TRC: Reconciliation; Compensation; Reparations; Amnesty; Perpetrators; Restorative justice vs Retributive justice.

Discussion:

- Reasons for the formation of the TRC
- The structure (commissions / committees) of the TRC

Discussion on content:

- Committee on Human Rights Violations
 - People told their stories to this committee.
 - 21 300 victims gave statements about 38 000 gross abuses of human rights.
 - Stories were told in public and covered by the media extensively.
 - Victims' stories were then investigated.
 - An attempt was made to ascertain who was responsible for the violations.

- Committee on Reparations and Rehabilitation:
 - It investigated the stories told by the victims.
 - About 21 000 victims applied for reparation.
 - 16 800 were granted a R30 000 once-off payment.
 - 571 still had to be contacted for payment (Nov. 2011).
 - It was not only the victims who needed to be rehabilitated, but also the perpetrators, so that they could be reconciled into society.

- Committee on Amnesty:
 - It granted amnesty from prosecution to perpetrators (wrong-doers) of gross human rights violations, if they could prove that their crimes were done because of a political motive. They had to tell the whole truth and acknowledge what they had done.
 - 7112 people applied for amnesty.
 - 5392 were refused amnesty.
 - 849 were granted amnesty.
This photograph shows the opening of the first public hearing held in East London, Eastern Cape, from 15 April 1996.

<table>
<thead>
<tr>
<th>Question</th>
<th>Marking Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What do you understand by the term 'reconciliation'? (1 x 2) (2)</td>
<td>(Skill: Explanation of a historical concept / term)</td>
</tr>
<tr>
<td>2. What do you think is the main message conveyed by the photograph?</td>
<td>(Skill: Photograph interpretation) (1 x 2) (2)</td>
</tr>
<tr>
<td>3. Using information from the source and your own knowledge, comment on why Alex Boraine and Archbishop Desmond Tutu are the focus in this photograph. (Skill: Source analysis) (2 x 2) (4)</td>
<td></td>
</tr>
<tr>
<td>4. Explain the usefulness of this source to a historian doing research on the work of the TRC. (Skill: Evaluation of usefulness of source) (2 x 2) (4)</td>
<td></td>
</tr>
</tbody>
</table>

Marking guideline

1. **Explanation of a concept – L1**
 - Bringing former enemies (perpetrators & victims) together to promote openness and forgiveness for a new democratic SA.
 - Any other relevant response. (1 x 2) (2)

2. **Interpretation of a source – L2**
 - To show the TRC in its first public hearing session.
 - To reflect the main purpose of the TRC, i.e. reconciliation and healing.
 - Any other relevant response. (1 x 2) (2)

3. **Analysis of a source – L2**
 - They are the leaders of the Commission.
 - Archbishop Desmond Tutu was the Chairperson of the TRC.
 - Alex Boraine was the Deputy Chairperson of the TRC.
 - Any other relevant response. (2 x 2) (4)

4. **Evaluate usefulness of a source – L3**
 - It is a photograph that was taken at the actual TRC session.
 - It shows the date on which the first public hearing was held.
 - It confirms the establishment of the TRC.
 - It confirms Alex Boraine and Tutu as leaders of the TRC.
 - Any other relevant response. (2 x 2) (4)
Life Sciences

<table>
<thead>
<tr>
<th>Subject:</th>
<th>Life Sciences - Grade 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic:</td>
<td>Circulation system in mammals</td>
</tr>
<tr>
<td>Lesson – content:</td>
<td>Structure and functions of the heart</td>
</tr>
</tbody>
</table>

Language aspects covered

Pre-activities:
- **Vocabulary**
- **Language used in the subject**
- **Prediction**

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-oxygenated blood</td>
<td>blood containing less oxygen</td>
</tr>
<tr>
<td>Oxygenated blood</td>
<td>blood containing more oxygen</td>
</tr>
<tr>
<td>Cavity</td>
<td>an empty / hollow space in a solid object, in particular, in mammals</td>
</tr>
<tr>
<td>Atrium</td>
<td>chamber or space, e.g. the two upper cavities of the heart</td>
</tr>
<tr>
<td>Ventricle</td>
<td>a hollow part or cavity in an organ</td>
</tr>
<tr>
<td>Superior [position] vena cava</td>
<td>the main vein that carries deoxygenated blood from the upper part of the body to the right atrium</td>
</tr>
<tr>
<td>Inferior [position] vena cava</td>
<td>the main vein that carries deoxygenated blood from the lower part of the body to the right atrium</td>
</tr>
</tbody>
</table>

NB: Superior and inferior does not mean that 1 blood vessel is BETTER than the other. It indicates position in the body.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>flap or pocket that allows a liquid to flow in ONE direction only</td>
</tr>
<tr>
<td>Tricuspid valve</td>
<td>valve made up of 3 flaps</td>
</tr>
<tr>
<td>Bicuspid</td>
<td>valve made up of 2 flaps</td>
</tr>
<tr>
<td>Semi-lunar valve</td>
<td>half-moon shaped valve</td>
</tr>
<tr>
<td>Atrio-ventricular [atrium - ventricle] valve</td>
<td></td>
</tr>
<tr>
<td>Chordae tendineae</td>
<td>cords (strings) / tough connective tissue made up of tendons (a tough band of fibrous connective tissue) that prevents the atrio-ventricular valves from turning inside out</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>a term associated with the lungs</td>
</tr>
<tr>
<td>Cardiac</td>
<td>a term associated with the heart</td>
</tr>
<tr>
<td>Pulmonary circulation of blood</td>
<td>the circulation of the blood between the heart and lungs</td>
</tr>
<tr>
<td>Systemic circulation of blood</td>
<td>the circulation of blood between the heart and all parts (systems) of the body</td>
</tr>
</tbody>
</table>

At the end of the lesson, learners should be able to:

1. **Label / name / identify** the parts of the human heart on a diagram.
2. **State / mention** the functions of the different parts of the human heart.
3. **Explain how / give details / make idea clear** the different parts of the human heart are structurally suited to its function.

During teaching

See below after the assessment.

Assessment

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment words</td>
<td>definition and requirements</td>
</tr>
<tr>
<td>Give</td>
<td>Write a term / label with no additional detail</td>
</tr>
<tr>
<td>State</td>
<td>Write a brief, specific answer that is to the point</td>
</tr>
<tr>
<td>Explain</td>
<td>Give the reason</td>
</tr>
<tr>
<td>Compare</td>
<td>Point out both the similarities and differences</td>
</tr>
<tr>
<td>Tabulate</td>
<td>Draw a table</td>
</tr>
</tbody>
</table>
ASSESSMENT

• Study the diagram of the human heart.

1. Give the labels for the following parts:
 1.1 G
 1.2 J
 1.3 A
 1.4 I

2. State ONE function of the following:
 2.1 H
 2.2 D
 2.3 K

3. Tabulate TWO differences in composition between the blood found in part E and the blood found in part C.

4. Explain why the left ventricle has thicker muscular walls compared to the right ventricle.

TOTAL: 15

Memorandum to mark the above test

1.
 1.1 Right atrium ✓
 1.2 Aorta ✓
 1.3 Pulmonary veins ✓
 1.4 Superior vena cava ✓

2.
 2.1 To prevent back-flow of deoxygenated blood when the right ventricle contracts. ✓
 2.2 To prevent deoxygenated and oxygenated blood from mixing. ✓
2.3 Transports deoxygenated blood to the lungs. √

3.

<table>
<thead>
<tr>
<th>E (RIGHT VENTRICLE)</th>
<th>C (LEFT VENTRICLE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains a low concentration of oxygen. √</td>
<td>Contains a high concentration of oxygen. √</td>
</tr>
<tr>
<td>Contains a high concentration of carbon dioxide. √</td>
<td>Contains a low concentration of carbon dioxide. √</td>
</tr>
</tbody>
</table>

(2 x 2)

+1 mark for drawing a table (5)

4. The left ventricle needs a more powerful contraction √ to pump / propel / push oxygenated blood from the heart to all parts of the body. √

The right ventricle only needs to pump deoxygenated blood to the lungs, which are next to the heart. √

(3)

TOTAL: 15
During Teaching / Script

1. Refer to the following diagrammatic representation of the heart.

Explain the orientation of the heart. Why is the heart drawn with the right side of the heart on the left side of the page? The reason is that this diagram represents the frontal view of the heart, as it is situated in the chest of a person.

The heart is surrounded by a protective membrane – the Pericardium (peri – around; cardiac – referring to the heart).

The heart is divided into the right side and the left side by means of a septum – a dividing wall - made up of cardiac muscle. The septum prevents deoxygenated blood from the right side of the heart mixing with the oxygenated blood from the left side of the heart.

Note that the right half of the heart is coloured BLUE to represent deoxygenated blood. The left half of the heart is coloured RED to represent oxygenated blood.

Oxyge\;nated blood is blood that contains a high amount of oxygen (O\(_2\)) and a low amount of carbon dioxide (CO\(_2\)).

Deoxyge\;nated blood contains a low amount of O\(_2\) and a high amount of CO\(_2\).

The human heart is divided into 4 chambers / compartments: right and left atrium, and right and left ventricle.

An atrium is an upper region or chamber of the heart that receives blood. The right atrium receives deoxygenated blood and the left atrium receives oxygenated blood.

The two lower chambers of the heart are called the ventricles. The ventricles have thicker muscular walls compared to the two atria (plural of atrium) above them.

The right ventricle receives deoxygenated blood from the right atrium. The left ventricle receives oxygenated blood from the left atrium.
2. Refer to the diagram of the heart and the associated blood vessels.

2.1 *Point out the 4 chambers in the diagram of the heart.* Note that the right side of the heart is coloured blue (deoxygenated blood) and the left side of the heart is coloured red (oxygenated blood). *Point out the septum that divides the right and left sides of the heart so that deoxygenated and oxygenated blood do not mix.*

2.2 Refer to the Right side of the heart. Remember this right side of the heart deals with deoxygenated blood.

The **superior** vena cava carries deoxygenated blood from the veins of the **upper** parts of the body (head, neck, hands and chest) to the right atrium. The **inferior** vena cava carries deoxygenated blood from the **lower** parts of the body (abdomen, hips and legs) to the right atrium.

Between the right atrium and the right ventricle is a valve. A valve is a flap or pocket of tissue that allows a liquid (in this case blood) to flow in **one direction only**.

The valve is called an **atrioventricular** valve – the name is derived from the two words **atrium** and **ventricle**.

It is specifically called the **tricuspid** valve – a valve that has **3 cusps / flaps**.

This valve allows blood to flow from the right atrium to the right ventricle and then closes when the ventricle contracts, so that no blood flows back into the right atrium. The valve is held in place by chordae tendinae. Chordae tendinae are cords / strings made up of tendons. Its function is to hold the 3 flaps in place, so that it does not turn inside out when the right ventricle contracts. (*Show this on the diagram.*)

Contraction of the right ventricle pushes / pumps deoxygenated blood via the pulmonary arteries to the lungs.

Note:

1. Normally, veins carry deoxygenated blood and arteries carry oxygenated blood.

2. The pulmonary artery transports deoxygenated blood – this is the only artery in the human body that transports deoxygenated blood.

The pulmonary artery has **semi-lunar** valves in it - **half-moon** shaped valves. These valves prevent the backflow of blood into the right ventricle when the right ventricle stops contracting.
2.3 *Refer to the left side of the heart.* Remember that this side of the heart deals with oxygenated blood.

Point out the pulmonary veins on the diagram. The pulmonary veins bring oxygenated blood from the lungs to the left atrium. Note: The pulmonary vein is the only vein in the body that transports oxygenated blood.

The valve between the left atrium and the left ventricle is also an atrioventricular valve. This is called the **bicusp**id valve – it has 2 cusps / flaps.

This valve allows blood to flow from the left atrium to the left ventricle; it then closes when the ventricle contracts, so that no blood flows back into the left atrium. The valve is held in place by chordae tendinae. Chordae tendinae are cords / strings made up of tendons whose function is to hold the 2 flaps in place, so that they (the flaps) do not turn inside out when the left ventricle contracts.

Note: A good way to **not** confuse the tricuspid and bicuspid valves is to remember that tricuspid has the letter R in it – it refers to the **Right** side of the heart. When the left ventricle contracts, it pumps out oxygenated blood via the aorta to all parts of the body.

The aorta also has semi-lunar shaped valves. This prevents the backflow of blood into the left ventricle when the ventricle stops contracting.

2.4 **Ventricles have a thicker muscular wall than atria** - so atria have thinner muscular walls. *Point this out on the diagram of the heart.*

Reason: When the atria contracts, it only pumps blood a very short distance into the ventricle. Therefore, atria do not need to have thick muscular walls.

The left ventricle has a thicker muscular wall than the right ventricle. *Point this out on the diagram of the heart.*

Reason: The right ventricle pumps blood to the nearby lungs (lungs are found alongside the heart). This is called pulmonary circulation of blood, which means the circulation of the blood to the lungs and back to the heart.

The left ventricle needs a more powerful contraction to pump blood to all parts of the body – this is the systemic circulation of blood.
LIFE SCIENCES – GRADE 11 LESSON

<table>
<thead>
<tr>
<th>Subject:</th>
<th>Life sciences Grade 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic:</td>
<td>Energy transformations to sustain life</td>
</tr>
<tr>
<td>Lesson 1: 30-40 minutes</td>
<td>Introduction to photosynthesis</td>
</tr>
</tbody>
</table>

Lesson - content
- The process of photosynthesis using words and symbols.
- The requirements and products of photosynthesis.
- The site of photosynthesis.

Language aspects covered

Pre-activities
- Vocabulary
- Language used in the subject
- Prediction

<table>
<thead>
<tr>
<th>Photosynthesis</th>
<th>photo = light</th>
</tr>
</thead>
<tbody>
<tr>
<td>synthesis = to make / to produce</td>
<td></td>
</tr>
<tr>
<td>metabolism = all chemical processes</td>
<td></td>
</tr>
<tr>
<td>anabolic = building up chemical processes</td>
<td></td>
</tr>
<tr>
<td>ana = building up</td>
<td></td>
</tr>
<tr>
<td>boic = processes</td>
<td></td>
</tr>
<tr>
<td>catabolic = breaking down chemical processes</td>
<td></td>
</tr>
<tr>
<td>cata = breaking down</td>
<td></td>
</tr>
<tr>
<td>boic = processes</td>
<td></td>
</tr>
<tr>
<td>autotrophic = organisms that produce their own food</td>
<td></td>
</tr>
<tr>
<td>auto = on its own / by itself</td>
<td></td>
</tr>
<tr>
<td>trophs = feeding</td>
<td></td>
</tr>
<tr>
<td>heterotrophic = organisms feeding on different organisms</td>
<td></td>
</tr>
<tr>
<td>hetero = different</td>
<td></td>
</tr>
<tr>
<td>trophs = feeding</td>
<td></td>
</tr>
<tr>
<td>radiant energy = energy from the sun</td>
<td></td>
</tr>
<tr>
<td>radiate = send out (ray of light)</td>
<td></td>
</tr>
<tr>
<td>potential energy = stored energy</td>
<td></td>
</tr>
<tr>
<td>chemical potential energy = energy stored in chemical bonds.</td>
<td></td>
</tr>
<tr>
<td>chlorophyll = pigment in green plants</td>
<td></td>
</tr>
<tr>
<td>chloro = green</td>
<td></td>
</tr>
<tr>
<td>phyll = pigment</td>
<td></td>
</tr>
<tr>
<td>chloroplast = organelle in which photosynthesis takes place</td>
<td></td>
</tr>
<tr>
<td>chloro = green</td>
<td></td>
</tr>
<tr>
<td>plast = plastid; double membrane structure found in plants only</td>
<td></td>
</tr>
<tr>
<td>stroma = liquid form of chloroplast</td>
<td></td>
</tr>
<tr>
<td>thylakoids = disc-shaped structures in the chloroplast; they contain the chlorophyll</td>
<td></td>
</tr>
<tr>
<td>thylla = flattened</td>
<td></td>
</tr>
<tr>
<td>koids = discs</td>
<td></td>
</tr>
<tr>
<td>grana = stack of thylakoids</td>
<td></td>
</tr>
<tr>
<td>light dependent phase = needing sunlight</td>
<td></td>
</tr>
<tr>
<td>light independent phase = not needing sunlight At the end of the lesson, learners should be able to:</td>
<td></td>
</tr>
<tr>
<td>Define the process of photosynthesis (using the appropriate vocabulary).</td>
<td></td>
</tr>
<tr>
<td>State where the processes of photosynthesis take place.</td>
<td></td>
</tr>
<tr>
<td>Write a word and chemical equation for photosynthesis.</td>
<td></td>
</tr>
<tr>
<td>Draw and label a chloroplast.</td>
<td></td>
</tr>
<tr>
<td>Post-teaching:</td>
<td>Assessment words:</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>• Give = write a name / label with no additional detail</td>
</tr>
<tr>
<td></td>
<td>• Draw = a labelled diagram</td>
</tr>
<tr>
<td></td>
<td>• Define = give a clear meaning</td>
</tr>
<tr>
<td></td>
<td>• Name = state the name (noun) of something</td>
</tr>
<tr>
<td></td>
<td>• Identify = pick out, find or select the answer</td>
</tr>
<tr>
<td></td>
<td>• Describe = state in words the main points; say what happens</td>
</tr>
<tr>
<td></td>
<td>• State = write a brief specific answer that is to the point.</td>
</tr>
<tr>
<td></td>
<td>In each assessment question, put a circle around the question word (verb) and underline any other important key words. These words tell you exactly what is being asked.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment activity:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1:</td>
<td>Complete the crossword puzzle with learners to consolidate the vocabulary (Attachment 1 & 2).</td>
</tr>
<tr>
<td>Activity 2:</td>
<td>Allow learners to complete the assessment activity.</td>
</tr>
<tr>
<td></td>
<td>Mark the activity with the help of the learners and provide feedback.</td>
</tr>
</tbody>
</table>
PHOTOSYNTHESIS

Introduction:

‘All living organisms need food / energy’.

Why?

- for growth
- for movement
- for active transport (requiring energy)

Where does food / energy come from?

Living organisms can be classified (grouped) into Autotrophic or Heterotrophic organisms, depending on where they get their food / energy from.

The difference between autotrophs and heterotrophs

- Autotrophs = organisms that are able to make their own food by the process of photosynthesis.
- Heterotrophs = organisms that feed on other organisms (They are unable to make their own food).

Plants are autotrophs because they produce their own food by photosynthesis.

What is Photosynthesis?

Photosynthesis is a chemical process in which green plants trap radiant energy from the sun and convert it into sugar (e.g. glucose).

Metabolism = a chemical process in which substances are either built up (anabolic) or broken down (catabolic).

Photosynthesis is an example of an anabolic process, because food is being produced (built up).

Use the diagram below for learners to identify the requirements and the products of photosynthesis.
Requirements for photosynthesis:

(Ask learners to identify the requirements from the diagram.)

- Radiant energy – sunlight
- Water (H_2O) – inorganic substance absorbed from soil
- Carbon dioxide (CO_2) – gas absorbed from the atmosphere
- Chlorophyll – the green pigment found in chloroplast

Products: (let learners identify the products from the diagram)

- Glucose ($C_6H_{12}O_6$) - sugar; stored as starch
- Oxygen (O_2) – a by–product; the gas that is released

(Once learners have identified the requirements and products, let them write a word equation for photosynthesis on their own.)

Remember: requirements (reactants) are to the left of the arrow \rightarrow the products are to the right.

EQUATION:

\[
\text{Sunlight} \quad \begin{align*}
\text{Water} & + \text{carbon dioxide} \\
H_2O & + CO_2 \\
\rightarrow & \\
\text{Glucose} & + \text{oxygen} \\
C_6H_{12}O_6 & + O_2
\end{align*}
\]

Site of photosynthesis: (where it takes place)

- Organ = leaves
- Cells = mesophyll
- Organelle = chloroplast

Structure of chloroplast: (surrounded by a double membrane)

- double membrane
- stroma = (surrounding liquid substance)
- thylakoids ($thylla$ = flattened; $koids$ = discs); containing chlorophyll. (Use a stack of coins to explain how the thylakoids stack together to form a granum.)

Allow learners to draw a diagram of a chloroplast (using the skills for diagrams)
Activity 1: Crossword puzzle (Terminology) [10 minutes]

(Attachment 1 and 2)

Allow learners to complete the crossword puzzle. (It can be done as homework.)

Mark the activity and do corrections in class.

Process of photosynthesis

Two phases:

- Light phase – light dependent (needs light)
- Dark phase – light independent (does NOT need sunlight)

Assessment activity 2:

Allow learners to complete Assessment activity 2. (15 minutes)

Mark the activity with learners and provide feedback.

Activity 2:

1.1 Give the correct biological terms for the following items. (Write only the correct term next to the question number.)

1.1.1 All chemical processes in a plant.
1.1.2 The site of photosynthesis.
1.1.3 The green pigment needed for photosynthesis.
1.1.4 The disc shaped structures in the chloroplast, which contain chlorophyll.
1.1.5 The organic substance formed as a product of photosynthesis. (5)

1.2 Draw a labelled diagram of the organelle in which photosynthesis takes place. (7)

2. What impact does deforestation have on the CO₂ concentration in the atmosphere? (3)

TOTAL: 15

Memorandum:

1.1 1.1.1 Metabolism ✓
1.1.2 Chloroplast ✓
1.1.3 Chlorophyll ✓
1.1.4 Thylakoids ✓
1.1.5 Glucose ✓ (5)
1.2

Mark allocation for diagram: (7)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caption</td>
<td>1</td>
</tr>
<tr>
<td>Shape (oval)</td>
<td>1</td>
</tr>
<tr>
<td>Labels (any 5)</td>
<td>5</td>
</tr>
</tbody>
</table>

2. Deforestation is the removal of a large number of trees ✔
 - this leads to a decrease in photosynthesis ✔
 - and an increase in CO₂ in the atmosphere ✔ (3)

Attachment 1
Crossword puzzle.pdf

Attachment 2
Answers to crossword puzzle.pdf
<table>
<thead>
<tr>
<th>Life Sciences Grade 12 Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject:</td>
</tr>
<tr>
<td>Topic:</td>
</tr>
<tr>
<td>Lesson:</td>
</tr>
</tbody>
</table>

Language aspects covered

Pre-activities
- **Vocabulary**
- **Language used in the subject**
- **Prediction**

- **allele**: *allelomorph* (*allēl = one another + morphē = form).* **One form of a gene.**
- **diploid**: *di = two + ploidy = number of sets of chromosomes.* Two sets of chromosomes.
- **genetics**: *the study of genes*
- **genotype**: *genea – generation or race.* It is the genetic composition of an organism. It is the information present in the alleles of the gene.
- **heterozygous**: *hetero= different + zygous = having zygotes of a specific kind.* Having different alleles of a gene.
- **homologous**: *homo = the same + logous = point / position.* Homologous chromosome pairs are chromosomes with the same size, shape and alleles for the same characteristic.
- **homozygous**: *homo = the same + zygous = having zygotes of a specific kind.* Having the same alleles of a gene.
- **inheritance**: something you receive, e.g. genes from parents.
- **locus**: *a place / specific point.*
- **maternal origin**: from the mother.
- **paternal origin**: from the father.
- **phenotype**: *phäenotypus – see + type.* Physical appearance.
- **somatic cells**: body cells.

This lesson will deal with:
- Concepts in Heredity

During teaching
See below.

Assessment verbs

Assessment words – definition and requirements:
- **Complete**: the answer demands the completion / filling in of missing information.
- **Define**: give a clear meaning.
During teaching / scripts

With your partner, discuss:

1. In what ways are you physically (that which you can see) different from your parents?
2. In what ways are you physically similar to either of your parents?
3. Do you have characteristics that are similar to those of your siblings or grandparents?
4. What characteristics do you have that are different from your partner? Describe how you are different.
5. Describe how similar you are to your partner.

Why do we differ from one another?

The educator should revise how crossing over, mutations and the random arrangement of chromosomes in meiosis results in genetic variation.

Genetics refers to the study of genes (plural of gene). A gene is a part of a DNA molecule that codes for a particular characteristic, e.g. attached earlobe. So genetics is the study of the inheritance of genes that you receive from your parents.

So let’s look at heredity.

Heredity refers to the transfer of characteristics from parents to offspring. The set of characteristics that have been transferred from parent to offspring is referred to as inheritance. Remember that human somatic cells (body cells) have 23 pairs of chromosomes. One set of each pair is of paternal origin (from the father) and the other set of each pair is of maternal origin (from the mother). This makes all somatic cells diploid. (Di = two + ploidy = number of sets of chromosomes).

(Use the diagrams below to explain the following concepts):

The nucleus contains the chromosomes. A chromosome is a structure made up of two chromatids joined by a centromere. The chromosomes are made up of genes. A gene is made up of a block of DNA that codes for a particular characteristic (e.g. eye colour).

Each characteristic is determined by two alleles – one from your mother and one from your father. These are situated on each chromosome of a homologous pair of homologous chromosomes has the same size, shape and alleles for the same characteristic. (Remember that a homologous pair of chromosomes has the same size, shape and alleles for the same characteristic.)

In the diagram below we look at a single-strand chromosome. The position or location of a gene on a chromosome is called the locus of the gene. (Plural – loci)
Each gene consists of two alleles. One allele is found in the paternal chromosome and the other allele is found on the maternal chromosome; these form a homologous pair. In the above example, one of the alleles for eye colour is found at a particular position on chromosome number 15 and the other allele is found in the same position on the other chromosome of the homologous pair.

One of the alleles of a particular characteristic (e.g. eye colour) can be dominant over the other allele. This is called the dominant allele. The other is called the recessive allele. We use a capital letter to represent the DOMINANT allele and the lowercase of the same letter to represent the RECESSIVE allele.

In this diagram, homologous chromosome pairs are shown as single-strand chromosomes. The one chromosome is from the mother and the other chromosome is from the father.

- **Phenotype:** The physical appearance of that organism. E.g. the colour of the eyes.
- **Genotype:** The genetic composition of an organism. E.g. Bb.
- **Homozygous:** An organism with the same alleles of a gene. E.g. BB or bb.
 - An organism can be homozygous dominant (BB) – the phenotype would be brown eyes.
 - An organism can be homozygous recessive (bb) – the phenotype would be blue eyes. The recessive trait will only be visible if the organism is homozygous recessive.
- **Heterozygous:** An organism has two different alleles (Bb) – the phenotype would be brown eyes.
 - The characteristic of the dominant allele will be seen. In this case the allele for brown eyes is dominant over the allele for blue eyes.
 - This is also referred to as the Law of Dominance: One factor (allele) for a pair of inherited traits is dominant and the other factor (allele) is recessive.
Activity 1:

Study the diagram below that shows a homologous chromosome pair:

![Diagram of a homologous chromosome pair]

1.1 Define the following terms:
 (a) Locus (1)
 (b) Gene (2)

1.1 The allele for black hair colour (F) is dominant over the allele for blonde hair colour (f), give the genotype for an organism that is:
 (a) Homozygous dominant and
 (b) Heterozygous for hair colour (2)

1.2 Why is the chromosome pair illustrated above, a homologous chromosome pair? (3)

Memo Activity 1

1.1 (a) The position of the gene on a chromosome. √ (1)
 (b) A small portion of a DNA √ coding for a particular characteristic √ (2)

1.2 (a) FF √
 (b) Ff √ (2)

1.3 - Same size √
 - Same shape √
 - Have alleles for the same characteristic √ (3)

Activity 2:

Complete the cross word puzzle by following the keys provided.

TIPS:

Work in pencil. By working in pencil, you give yourself room to guess, make and correct mistakes. Remember, mistakes make you a better puzzler in the end.

Think about the theme. If a puzzle has a title, it indicates the theme of that puzzle

Tick off each clue that you solve. Marking your progress gives you a sense of accomplishment and helps you focus on those clues that remain.

Attachment 1 Cross word puzzle gene.pdf
In our daily lives, we come across statements such as:

- It will probably rain today.
- I doubt that he will pass the test.
- The odds are against him to win the elections.
- Chances are high that the price of petrol will drop, next week.
- She stands a 50-50 chance of winning the SRC elections at her school.

Words such as “probably”, “doubt”, “chance”, all point to some degree of uncertainty. The predictions made are based on our previous experiences when similar conditions prevailed.

The table below provides us with some of the words we may encounter in our study of probability in grade 10. The words may assume a different meaning in the mathematics class from the one we normally associate with the word.

<table>
<thead>
<tr>
<th>Term / Word</th>
<th>Ordinary English (OE)</th>
<th>Mathematical English (ME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>Refers to an activity, e.g.: the upcoming rugby game between arch rivals.</td>
<td>Specific result of an activity, e.g.: throwing a single dice and getting a 1, 2, 3, 4, 5 or 6 is an event.</td>
</tr>
<tr>
<td>Outcome</td>
<td>Refers to what we would like to achieve at the end of meeting / lesson, etc. e.g.: The outcome of this session is to...</td>
<td>Is the actual result of an activity, e.g.: tossing a fair coin – outcomes are head or tail</td>
</tr>
<tr>
<td>Frequency</td>
<td>The radio station is available on FM frequency.</td>
<td>The frequency of an outcome refers to the number of times it happens, e.g.: If a coin is tossed five times, what is the frequency of the coin landing on head?</td>
</tr>
<tr>
<td>Possibility</td>
<td>There is a possibility of snow falling on the mountains in July.</td>
<td>A possibility is an outcome that can happen. E.g.: When tossing a coin, it is possible for the coin to land on heads.</td>
</tr>
<tr>
<td>Probability</td>
<td>There is a strong probability of Anna achieving seven distinctions in her final grade 12 examinations.</td>
<td>The probability of an outcome (or event) is a measure of how likely that outcome is. A value of 0 (zero) means it is impossible; while a value of 1 (one) indicates that outcome is certain; otherwise the value must lie between 0 and 1. The probability may be given as a common fraction ((\frac{1}{2})), a decimal fraction (0.5) or as a percentage (50%).</td>
</tr>
<tr>
<td>Probability scale</td>
<td>Your chances of achieving success feature low on the probability scale.</td>
<td>A probability scale is a line numbered from 0 to 1 or 0 to 100% on which outcomes (or events) can be placed according to their probability.</td>
</tr>
<tr>
<td>Equally likely</td>
<td>Mpho is equally likely to assume the leadership role at her school.</td>
<td>A set of outcomes associated with an activity are described as being equally likely when each occurs as readily as any other.</td>
</tr>
</tbody>
</table>
| **Theoretical probability** | "I do not understand the section on theoretical probability", said Ahmed. | The theoretical probability of an outcome is the value predicted from the fraction given by:
NB: This can only be done when the items on which the activity is based (dice, cards, coins, etc.) have outcomes that are all equally likely.
Example: When a normal dice (faces numbered 1 to 6) is rolled the probability of:
Getting a 4 is: \(P(4) = \) OR 0,1666 OR 16,66%
Getting more than 4 is: \(P(>4) = \)
Getting 1, 2 or 5 is: \(P(1,2,5) = \) |
| **Experimental probability** | "The section on experimental probability is easier than theoretical probability", remarked the teacher. | The experimental probability of an outcome is the value found after an activity has been done several times and is given by: |
| **Relative frequency** | Relative frequency is also sometimes referred to as experimental probability. | |
| **Fair** | Susan is fair in complexion. | A fair item (dice, coin, pack of cards, etc.) is one for which all outcomes are equally likely. |
| **Biased** | Santha is biased towards Heidi in Life Orientation. | A biased item is one in which all outcomes are NOT equally likely. |
| **Chance** | "You stand a chance of winning this week’s LOTTO prize of R45 million by purchasing your ticket today". | The chance of an outcome might refer EITHER to its being determined only by a whim of fate OR to the probability of that outcome.
Example: Whether a coin lands heads or tails is a matter of chance.
The chance of getting a head is one-half. |
| **Mutually exclusive events** | The result of you passing or failing is mutually exclusive. | Are sets of events or outcomes for which the happening of one of them means that none of the others can happen.
Example: When rolling a single fair dice the outcomes are mutually exclusive, e.g.: the number showing cannot be a 2 and 3 simultaneously. |
| **Independent event(s)** | The community in Jakkalsdraai will have an independent event celebrating the town’s centenary. | Two or more events or outcomes are independent if the happening of one of them has no effect on the other. |
| **Dependent event(s)** | The team that wins the league title is dependent on the result of the later game. | Two events or outcomes are dependent if a statement or probability for one of them affects a statement or probability for the other.
Example: One box holds 4 red marbles and 6 blue marbles; while a second box holds 1 red marble and 99 blue marbles. |
| **Odds** | He was at odds with his wife over the type of car to be purchased. | are another type of probability and the odds against a successful outcome happening are given by:
(Number of other outcomes in the activity) \(\) TO (number of ways outcome can happen)
Example: The odds against a 3 with a single dice are 5 to 1; since there are 5 other numbers and only one 3, so there are 5 ways of losing and only 1 way of winning.
The probability of getting a 3 is: \(OR \)
Odds of \(\) to \(b \) change to a probability of:
A probability of \(\) changes to odds of \((b - a) \) to \(a \) |
| **Evens** | "It's evens Stevens, Mr Cloud", remarked Ms Lighton. | When the odds are 1 to 1 they are even. The probability for evens is |
| **Sample space** | | Is the list of all possible outcomes of a probability experiment.
E.g.: When a single die is rolled, the possible outcomes are:
\[S = \{1, 2, 3, 4, 5, 6\} \] |
| **Random experiment** | I am basing my argument on a random experiment conducted by a local polling agent. | An experiment in which all outcomes are equally likely. No one outcome is more predictable than any other. |
| **Random number** | Your mobile number is a string of random numbers. | A number produced by a random experiment, such as rolling a single dice or spinning a spinner. For example, rolling a fair dice produces a random number each time, because each of the possible numbers - 1, 2, 3, 4, 5, 6 - has the same chance of appearing each time. |
| **Random sample** | I will randomly select my sample from the available list of schools. | A sample that gives all members of the population the same chance of being selected. |
| **Sample** | The shop assistant displayed a sample of items on sale to the customer. | A sub-set of a population that is obtained through some process, possibly random selection or selection based on a certain set of criteria, for the purposes of investigating the properties of the underlying parent population. |
| **Population** | The population of rhino's in South Africa is shrinking yearly. | The entire set of items from which data can be selected. For example, a poll given to a sample of voters is designed to measure the preferences of the population of all voters |
| **Set** | The guest liked the hostess’s china tea set. | A set is a collection of objects (letters, numbers, symbols, etc.) that is defined either by listing all the objects OR by giving a rule that allows a decision to be made as to whether an object belongs in that set. Sets are usually shown listed or defined within \{\}-curly brackets. |
| **Sat** | The brown cat sat on the white sofa. | |
| **Universal set** | A set which is first defined (by a list or rule) and within which all the statements that follow must be interpreted.
E.g.: In the universal set (all positive numbers) \(x^2 = 4 \) has only the solution \(x = 2 \), since \(x = -2 \) is not in the universal set. |
| **Member** | Sihle is a member of the regional Under 23 soccer team. | A member of a set is one of the objects contained in each set. |
| **Element** | The element in the kettle is not working. | A member of a set is also referred to as an element of a set. We use the symbol \(\in \) to denote an item belonging to a set; e.g.: 2 \(\in \) \{even numbers\}. |
| **Empty set / null set**. | There are no commonalities between the siblings Sarah and Thabiso. | The empty set is the set which has NO members. Example: The set of \{all odd numbers divisible by 2\} is empty. The symbol for empty set is \(\emptyset \) OR |
| **Complement** | The complement of a set is all those members which are not in that set, but which are in the universal set originally given. The symbol for the complement of a set is \(\complement \).
Example: Suppose the universal set is \{odd numbers less than 30\} and the set \(A \) is \{all prime numbers\}, then the complement of \(A \) is given by:
\[A = \{1, 9, 15, 21, 25, 27\} \]
\(\complement A \) consists of all outcomes not in \(A \) (that is, \(S \setminus A \)). |
<table>
<thead>
<tr>
<th>Compliment</th>
<th>To thank a person for doing well on an activity.</th>
<th>A/B (read ‘A union B’) consists of all the outcomes in A or in B (or both!)</th>
</tr>
</thead>
</table>
| OR | I prefer to wear either a brown shirt or a white shirt with my chino pants. | The union of two or more sets is their combination into a single set containing ALL the members of the original sets. An element found in more than one of the original sets needed only be shown once in the union. We use the symbol to indicate the union of sets. Example:
\{4, 7, 13, 20\} \{2, 7, 10\} is given by
\{2, 4, 7, 10, 13, 20\} |
| Union | The marriage of Beth and Betha is the union of two people. | |
| AND | I enjoy a toasted cheese and tomato sandwich. | A\∩B (read ‘A intersection B’) consists of all the outcomes in both A and B |
| Intersection | The accident took place at the intersection of Johnny Walker and Castle Road. | The intersection of two or more sets is the single set comprising of those element(s) common to all the original sets. We use the symbol to denote the intersection of sets. Example:
\{4, 7, 13, 20\} \{2, 7, 10\} is given by
\{7\} |

During teaching

1. Take any fair coin, toss it ten times and note down the number of times heads and tails comes up. Record your observations in the form of the following table, by placing a “1” in the appropriate column.

<table>
<thead>
<tr>
<th>Toss Number</th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g.:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on your results in the above table, determine the value of the following fractions:
1. What do you notice about the occurrences of the number of heads in the above activity?

2. What do you notice about the occurrences of the number of tails in the above activity?

3. Express your findings in:
 a) Ordinary English:…………………………….
 b) Mathematical symbolic form:……………………

4. The sample space of a fair six-sided die is:

5. The following represents outcomes from the sample space:

 a) Occurrences of the number of heads in the above activity?
 b) Occurrences of the number of tails in the above activity?

 Based on your results in the table for activity 2, determine the value of the following fractions:

 a) \[\frac{\text{occurrences of heads}}{\text{total trials}} \]
 b) \[\frac{\text{occurrences of tails}}{\text{total trials}} \]

6. The sample space of a fair six-sided die is:

 a) \{1, 2, 3, 4, 5, 6\}
 b) \{1, 3, 5\}
 c) \{2, 4, 6\}

7. From the figure above, the following can be concluded:

 a) \(E = \{\text{the even numbers from } S\} = \{2, 4, 6\} \)
 b) \(O = \{\text{the odd numbers from } S\} = \{1, 3, 5\} \)

8. The number of possible outcomes is 6.
5.1 O and E are sub-sets of the sample space and therefore called **events**.
5.2 Events O and E contain all elements of the sample space and therefore are **called exhaustive events**.
5.3 Events O and E have no common element(s) and therefore are called **mutually exclusive events**.
5.4 Events O and E are exhaustive and mutually exclusive and therefore are called **complementary events**.

<table>
<thead>
<tr>
<th>Assessment terms / verbs</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate</td>
<td>The learner is expected to perform a mathematical calculation using a formula or a known algorithm.</td>
<td>If A and B are two mutually exclusive events and P(not A) = 0.1 and P(A or B) = 0.5, calculate P(A)</td>
</tr>
<tr>
<td>Justify</td>
<td>When the learner is asked to justify his/her response he/she is expected to provide a mathematical argument that either supports or rejects a claim made</td>
<td>If P(A) = 0.2 and P(B) = 0.8. Are the events A and B independent or dependent of each other? Justify your response.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>When the learner is asked to evaluate, he/she is expected to determine the value of an expression / statement using given information.</td>
<td>Evaluate , if P={2,3,5} and E={2,4,6}</td>
</tr>
</tbody>
</table>
Assessment

1. Two events A and B are mutually exclusive

1.1 Calculate

1.2 Are the events complementary? Justify your answer?

2. In each row of this table, an event is described. Put a tick in the column which best describes the likelihood of each event.

<table>
<thead>
<tr>
<th>Event</th>
<th>Impossible</th>
<th>Very unlikely</th>
<th>Unlikely</th>
<th>50% chance</th>
<th>Likely</th>
<th>Very likely</th>
<th>Certain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neospiro has ten marbles of the same size in her pocket. F, white and 4 red marbles. She takes out a white marble when she picks her hand in her pocket without looking.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A slice of bread with butter and jam spread on one side is dropped on the floor. It lands with the jam side facing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A coin is tossed to decide who has the kick-off in a soccer match. Batana Batana wins the toss at the start of their next match.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A dice is thrown and the number 3 lands on top.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A light bulb which is expected to last for 500 hours blows after 2 hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A drawing pin is tossed and it lands with the pin facing upwards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>You will turn 2 years old on your next birthday.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifteen percent of Aals are blue. You choose a blue Aalo from a full pack with your eyes closed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two percent of the values in new soccer balls are defective. You buy a ball with a good value.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. A tyre manufacturing company kept a record of the distance covered before a set of four tyres needed to be replaced. The table below shows the results of 1000 reported cases.

<table>
<thead>
<tr>
<th>Distance travelled in kilometres (km)</th>
<th>Less than 4000</th>
<th>4000 to 9000</th>
<th>9001 to 14 000</th>
<th>Greater than 14 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>20</td>
<td>210</td>
<td>325</td>
<td>445</td>
</tr>
</tbody>
</table>

If you buy a set of four tyres from this company, calculate the following probabilities:

3.1) The set of four tyres will need to be replaced before it has covered 4000 km?
3.2) The set of four tyres will last more than 9000 km?
3.3) The set of four tyres will need to be replaced after it has covered somewhere between 4000 km and 14000 km?
1. Two events A and B are mutually exclusive

1.1 Calculate

1.2 Are the events complementary? Justify your answer?

3. A tyre manufacturing company kept a record of the distance covered before a set of four tyres needed to be replaced. The table below shows the results of 1000 reported cases.

<table>
<thead>
<tr>
<th>Distance travelled in kilometres (km)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 4000</td>
<td>20</td>
</tr>
<tr>
<td>4000 to 9000</td>
<td>210</td>
</tr>
<tr>
<td>9001 to 14 000</td>
<td>325</td>
</tr>
<tr>
<td>Greater than 14 000</td>
<td>445</td>
</tr>
</tbody>
</table>

If you buy a set of four tyres from this company, calculate the following probabilities:

3.1) The set of four tyres will need to be replaced before it has covered 4000 km?

3.2) The set of four tyres will last more than 9000 km?

3.3) The set of four tyres will need to be replaced after it has covered somewhere between 4000 km and 14000 km?

4. Study the Venn diagram below and answer questions that follow

4.1 Are the events P and E exhaustive? Justify your answer.

4.2 Calculate

4.3 Evaluate

References:

Like algebra, the branch of mathematics called geometry is a mathematical system. Each system has its own vocabulary and properties. In the formal study of a mathematical system, we begin with undefined terms. Building on this foundation, we can then define additional terms. Once the terminology is sufficiently developed, certain properties (characteristics) of the system become apparent. These properties are known as axioms or postulates of the system; more generally, such statements are called assumptions. Once we have developed a vocabulary and accepted certain postulates, many principles follow logically when we apply deductive methods. These statements can be proved and are called theorems.

We have often heard about people “talking in circles” or “going off at a tangent” on a topic, or “that strikes a chord with me” or “get to the point” or “you are taking a different angle to the matter at hand” or “that hand bag complements your outfit” are commonly heard.

<table>
<thead>
<tr>
<th>Term / word</th>
<th>Ordinary English</th>
<th>Mathematical English</th>
<th>Diagram / Sketch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Come to the point regarding bullying.</td>
<td>A point marks a position but has no size. In practice, when we draw a point it clearly has a definite width, but it represents a point in our imagination.</td>
<td>![Point Diagram]</td>
</tr>
<tr>
<td>Line</td>
<td>Your comments regarding bullying are out of line.</td>
<td>A line has no width and extends infinitely in both directions. When we draw a line it has width and it has ends, so it is not really a line, but represents a line in our imagination. Given two distinct points A and B then there is one (and only one) line which passes through both points.</td>
<td>![Line Diagram]</td>
</tr>
<tr>
<td>Parallel lines</td>
<td></td>
<td>Given two distinct lines, there are two possibilities: They may either meet at a single point or they may never meet, no matter how far they are extended (or produced). Lines which never meet are called parallel. In the second diagram, we write (AB \parallel CD).</td>
<td>![Parallel Lines Diagram]</td>
</tr>
<tr>
<td>Term / word</td>
<td>Ordinary English</td>
<td>Mathematical English</td>
<td>Diagram / Sketch</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Angle</td>
<td>You provide an interesting angle to discipline issues at same gender schools.</td>
<td>An angle is formed when two straight lines intersect (cross) or meet each other at a point, and its size is measured by the amount one line has been turned in relation to the other.</td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td>An arc of a circle is any piece of the curve which makes the circle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circle</td>
<td>The presenter spoke in circles regarding bullying.</td>
<td>A circle is a set of points which is equidistant from a fixed point.</td>
<td></td>
</tr>
<tr>
<td>Centre of circle</td>
<td></td>
<td>The centre of a circle is the fixed point from which the distance to the closed curve forming the circle is measured.</td>
<td></td>
</tr>
<tr>
<td>Circumference of circle</td>
<td></td>
<td>The circumference of a circle is the distance measured around the curve which makes the circle.</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td>The radius of a circle is the distance from the centre to the curve which makes the circle. A radius is any straight line from the centre to the curve.</td>
<td></td>
</tr>
<tr>
<td>Term / word</td>
<td>Ordinary English</td>
<td>Mathematical English</td>
<td>Diagram / Sketch</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Chord</td>
<td>His music struck a chord with me.</td>
<td>A chord of a circle is any straight line drawn across a circle, beginning and ending on the curve making the circle.</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>His views on bullying are diametrically opposed to his superiors.</td>
<td>A diameter of a circle is a straight line passing through the centre and which touches the curve forming the circle at each of its ends.</td>
<td></td>
</tr>
<tr>
<td>Sector of a circle</td>
<td>Johnny is the chairperson of his local sector policing forum.</td>
<td>A sector of a circle is the shape enclosed between an arc and the two radii at either end of that arc.</td>
<td></td>
</tr>
<tr>
<td>Segment of a circle</td>
<td></td>
<td>A segment of a circle is the shape enclosed between a chord and one of the arcs joining the ends of that chord.</td>
<td></td>
</tr>
<tr>
<td>Major / Minor – arc/sector/segment</td>
<td></td>
<td>When one arc, sector or segment is made in a circle, then the remainder of the circle makes another arc, sector or segment. The larger part is known as the major arc / sector / segment and the smaller part is known as the minor arc / sector / segment.</td>
<td></td>
</tr>
<tr>
<td>Term / word</td>
<td>Ordinary English</td>
<td>Mathematical English</td>
<td>Diagram / Sketch</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Semi-circle</td>
<td>A semi-circle is one half of a circle made by cutting along a diameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle properties of a circle</td>
<td>Refers to the collection of theorems which give the relationships between various parts of a circle (chord, segment, etc.) and angles associated with them.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtended angle</td>
<td>Given three distinct points A, B and C (which are not collinear), the subtended angle of any two points at the third, is the angle formed between the lines drawn from the first two points to the third. The subtended angle of points A and B at C would be the angle formed between the lines AC and BC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle in a segment</td>
<td>The angle in a segment is the angle formed between the two lines drawn from the ends of the chord making the segment to any point on the circumference of that segment. It is the angle subtended at the point on the circumference by the chord. In any given segment, all the subtended angles are the same size.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle in a semi-circle</td>
<td>In any semi-circle, the angle subtended by the diameter at any point on the circumference is a right angle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle at the centre of a circle</td>
<td>The angle at the centre of a circle is the one formed between two radii drawn from two points on the circumference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term / word</td>
<td>Ordinary English</td>
<td>Mathematical English</td>
<td>Diagram / Sketch</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Tangent</td>
<td>He went off at a tangent during the debate on bullying at schools.</td>
<td>A tangent to a circle is a line which touches the circle at one and only one point. From any one fixed point outside circle two tangents can always be drawn to that circle. The radius drawn at the point where the tangent touches the circle is at right angles to the tangent.</td>
<td></td>
</tr>
<tr>
<td>Common tangent</td>
<td></td>
<td>A common tangent is a tangent that touches two circles.</td>
<td></td>
</tr>
<tr>
<td>Direct common tangent</td>
<td></td>
<td>A direct common tangent is a common tangent that DOES NOT pass between the centres of the two circles.</td>
<td></td>
</tr>
<tr>
<td>Transverse common tangent</td>
<td></td>
<td>A transverse common tangent is a common tangent that DOES pass between the centres of the two circles.</td>
<td></td>
</tr>
<tr>
<td>Secant</td>
<td></td>
<td>A secant is a line which cuts a circle in two points.</td>
<td></td>
</tr>
<tr>
<td>Alternate segments</td>
<td></td>
<td>Any chord drawn in a circle creates two segments, and one is said to be the alternate of the other. When a chord is drawn from the point of contact of a tangent then the angle between the tangent and the chord, measured on ONE side of the chord, is equal to the angle in the alternate segment, which lies on the OTHER side of the chord.</td>
<td></td>
</tr>
<tr>
<td>Term / word</td>
<td>Ordinary English</td>
<td>Mathematical English</td>
<td>Diagram / Sketch</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Quadri-lateral</td>
<td>A quadrilateral is a polygon which four sides. The sum of the interior angles adds up to 360°.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circum-circle</td>
<td>A circumcircle to any polygon is the circle drawn around the OUTSIDE of that polygon which touches ALL of its vertices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concyclic points</td>
<td>Points which lie on a circle are called concyclic points.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic quadrilateral</td>
<td>A cyclic quadrilateral is a quadrilateral around which a circle can be drawn to pass through all of its vertices. It would be the circumcircle for that quadrilateral.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. The diagram below shows different parts of the circle:

<table>
<thead>
<tr>
<th>Angle at circumference</th>
<th>Angle at centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>a =</td>
<td>b =</td>
</tr>
<tr>
<td>c=</td>
<td>d=</td>
</tr>
<tr>
<td>e=</td>
<td>f=</td>
</tr>
<tr>
<td>g=</td>
<td>h=</td>
</tr>
</tbody>
</table>

1.1 Use the above diagram to determine the differences between the following terms:

1.1.1 Tangent and radius
1.1.2 Diameter and a chord
1.1.3 Arc and segment

2. In each of the following circles, accurately measure the angles represented by letters a to h. Write your answers in the table supplied.

Use your results to complete the following statements:

2.1. The size of the angle subtended by an arc or chord of a circle at the centre is ____________ the size of the angle subtended by the same arc or chord at the ____________.

2.2. The angle in a semi-circle is a ____________ angle.

Assessment terms

In the following activity, you may come across the following terms.

<table>
<thead>
<tr>
<th>Term/Verb</th>
<th>Explanation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prove</td>
<td>You are expected to provide a mathematical argument, using appropriate facts (theorems, postulates, axioms, etc.)</td>
<td>Prove that ABC is a tangent to the circle passing through points B, D, and E.</td>
</tr>
</tbody>
</table>

Justify

Provide mathematical reasons to support or dispute a given piece of information.

| **Hence** | To use previously accepted / proven results in subsequent question). | Hence, prove that PN // QA |

| **Name** | You are expected to identify / list with reasons. | Name with reasons, three angles each equal to x |
Assessment

In the diagram, two circles touch each other externally at A. BAC is a common tangent to both circles at A. PAQ is a double chord. QR is a diameter of the larger circle. PT is a tangent to the smaller circle. QRT and NAR are straight lines. Let $\hat{P} = x$

| 1.1 Are the points P, N, A and R concyclic? Justify your response. |
| 1.2 Name, with reasons, three other angles each equal to x. |
| 1.3 Hence, explain why PN \parallel RQ. |
| 1.4 Prove that PN is a diameter of the smaller circle. |
| 1.5 Prove that APTR is a cyclic quadrilateral. |

References:

In our daily lives, we come across statements such as:

- The MPC dropped the repo rate by 0.25% today.
- An increase in the repo rate does not bode well for the already cash strapped consumer.
- The vehicle depreciates at 12% per annum.
- Employees in the formal economic sector are encouraged to have a retirement annuity fund to supplement their pension pay outs.
- Compound interest is a wealth creation tool.
- In the business world equipment/vehicles is normally sold at scrap value/book value after a certain number of years.

Everyone requires food, housing, clothing and transport, and a fulfilling social life. Money allows us to purchase the things we need and desire. The ability to manage money is key to a financially secure future and a reasonable retirement with some fun along the way. Each individual is responsible for managing his or her own finances; therefore, it is imperative that everyone is financially literate.

The table below provides us with some of the words we may encounter in our study of financial mathematics in grade 12. The words/concepts may assume a different meaning in the mathematics class from the one we normally associate with the word. In some instances, words/concepts mean the same in both contexts.

<table>
<thead>
<tr>
<th>Term / Word</th>
<th>Ordinary English (OE)</th>
<th>Mathematical English (ME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuity</td>
<td>Same as in ME</td>
<td>An annuity is a compound interest investment from which payments are made on a regular basis for a fixed period of time. At the end of this time the investment has no residual value.</td>
</tr>
<tr>
<td>Deferred payments</td>
<td>Same as in ME. Also mean delayed payments</td>
<td>This happens when the loan agreement states that the first payment is made some time (say 3 months or 6 months) after the loan has been granted.</td>
</tr>
<tr>
<td>Effective interest rate</td>
<td>The equivalent annual interest rate that would be received due to the effects of compounding interest. $\text{ieff} = \left(1 + \frac{i}{m}\right)^m - 1$</td>
<td></td>
</tr>
<tr>
<td>Nominal interest rate</td>
<td>A nominal rate is an annual rate which financial institutions quote. This interest rate does not take into consideration the effect of different compounding periods, which are shorter than the annual period. For example, 15% per annum compounded monthly is a nominal rate. The annual rate is 15% but the fact that the interest is compounded monthly means that the accumulated amount at the end will be higher. The quoted annual rate of 15% will yield a lower accumulated amount than 15% compounded monthly. $i_{\text{eff}} = \left(1 + \frac{i}{m}\right)^m - 1$</td>
<td></td>
</tr>
<tr>
<td>Deposit</td>
<td>Similar to ME. For example, the school requires its learners to pay an annual book deposit fee.</td>
<td>Refers to a sum of money that is paid by an individual/company in lieu of an item purchased. Example, when purchasing a motor vehicle, the buyer paid R40 000.00 as a deposit towards the financing of the vehicle.</td>
</tr>
<tr>
<td>Term / Word</td>
<td>Ordinary English (OE)</td>
<td>Mathematical English (ME)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>Similar to ME. Also used as an adjective, as in the example that follows: The young teacher has been diagnosed with having withdrawal symptoms.</td>
<td>Refers to the “taking out” / accessing of funds (money) from a savings account / investment account. Example: To finance his son’s tertiary studies, the father withdrew an amount of R50 000,00 from his (the father’s) savings account.</td>
</tr>
<tr>
<td>Depreciation</td>
<td>Same as in ME.</td>
<td>In many situations, equipment can lose its value over a given time period. Motor vehicles, computers lose value over time due to wear and tear or becoming obsolete. When this happens, we say that the equipment is depreciating in value over time. There two commonly used forms of depreciation- flat rate or linear depreciation and reducing balance depreciation. Depreciation is the opposite of appreciation.</td>
</tr>
<tr>
<td>Flat rate or linear (straight line) depreciation</td>
<td>Same as in ME. For example, “That piece of scrap of yours has no value!”</td>
<td>In flat rate or linear depreciation, the value of an asset is depreciated by a fixed amount each year. Usually this amount is specified as affixed percentage of the original cost.</td>
</tr>
<tr>
<td>Reducing balance depreciation</td>
<td>Same as ME. For example, “That piece of scrap of yours has no value!”</td>
<td>In reducing balance depreciation, the value of an asset is depreciated by a fixed percentage of its value each year. Reducing balance depreciation is sometimes called diminishing value depreciation.</td>
</tr>
<tr>
<td>Scrap-value</td>
<td>Same as in ME.</td>
<td>Scrap value is the book value of the equipment at the end of its useful life.</td>
</tr>
<tr>
<td>Book-value</td>
<td>Same as in ME. Also used as follows: That book you are reading is of no value to you!</td>
<td>Book value is the value of equipment at a given time after depreciation has taken place.</td>
</tr>
<tr>
<td>Interest rate</td>
<td>The young lad shows an interest in soccer.</td>
<td>The figure quoted by a financial institution to borrowers.</td>
</tr>
<tr>
<td>Compound Interest</td>
<td></td>
<td>The interest earned by investing a sum of money (the principal) is compounded interest if each successive interest payment is added to the principal for calculating the next interest payment.</td>
</tr>
<tr>
<td>Period</td>
<td>The school has 10 periods per day.</td>
<td>This refers to the time period that a sum of money is invested for or the duration of a loan.</td>
</tr>
<tr>
<td>Compound-ing period</td>
<td></td>
<td>Interest is normally quoted per annum, but it can be calculated over different time periods during a year. The common compounding periods are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually: once per year (usually at the end of the year);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-annually or bi-annually or half-yearly: twice per year (or every six months);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly: four times per year (or every three months);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monthly: twelve time per year (every month);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daily: 365 times a year (excluding leap years)</td>
</tr>
<tr>
<td>Simple interest</td>
<td></td>
<td>Simple interest is the interest accumulated when the interest payment in each period is a fixed fraction of the principal. For example, if the principal, P, earns simple interest at a rate of i% per period, then after n periods the accumulated simple interest is given by: Si =</td>
</tr>
<tr>
<td>Term / Word</td>
<td>Ordinary English (OE)</td>
<td>Mathematical English (ME)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Time line</td>
<td>I noticed you are posting interesting comments on your Facebook time-line.</td>
<td>A timeline is a visual representation to show movement (i.e. additional withdrawals and or deposits) on an account which is not made on a regular basis. Example: An amount of R2850,00 is initially invested at 8% p.a. compounded quarterly for 15 years. After 9 years the interest rate changes to 10,5% p.a. compounded monthly. How much is the investment worth after 15 years? The information can be shown on a time line as follows:</td>
</tr>
<tr>
<td>Loan</td>
<td>Same as in ME.</td>
<td>A loan is an amount of money borrowed from a registered financial institution like a commercial bank.</td>
</tr>
<tr>
<td>Reducing balance loan</td>
<td>A reducing balance loan is a compound interest loan where the loan is repaid by making regular payments and the interest paid is calculated on the amount still owing (the reducing balance of the loan) after each payment is made.</td>
<td></td>
</tr>
<tr>
<td>Future value calculations</td>
<td>Future value calculations are used when a certain amount of money is deposited into an account on a regular basis in order to save money. Therefore, future value calculations are used for: Retirement annuities; savings accounts (where equal deposits are made at regular set intervals); sinking funds.</td>
<td></td>
</tr>
<tr>
<td>Present value calculations</td>
<td>Present value calculations are used when payments are made on a regular basis in order to pay back a loan. In these calculations money is first received and then paid back. Therefore present value calculations are used for: Loan repayments; bond repayments.</td>
<td></td>
</tr>
<tr>
<td>Sinking fund</td>
<td>Many businesses will purchase equipment which will be used for a given period of time. After a number of years, this equipment is usually sold at scrap value and new upgraded equipment is bought. The business will often set up a savings plan at the time of purchasing the original equipment. This savings plan is a future value annuity which is called a sinking fund in the world of business.</td>
<td></td>
</tr>
<tr>
<td>Pyramid scheme</td>
<td>“The pyramids at Gaza in Egypt are as old as humanity”, remarked Mr Jonas</td>
<td>A pyramid scheme is an illegal multilevel marketing scheme. It relies on a participant recruiting new members into the scheme with the promise of very high returns on an investment. As each investor joins, a new level of the pyramid is created and the investors in each level above gain from the new investor.</td>
</tr>
</tbody>
</table>
During teaching activities:

1. Four learners Melokuhle, Lesley, Thato and Vuyo each invested the lump sum of R18500.00 for 6 years at 8% interest per annum on different compounding periods. Melokuhle’s compounded annually, Lesley half-yearly, Thato quarterly and Vuyo monthly p.a. Which of the four learners has chosen the better investment option? Justify your answer.

<table>
<thead>
<tr>
<th>Data</th>
<th>Melokuhle</th>
<th>Lesley</th>
<th>Thato</th>
<th>Vuyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounds per annum</td>
<td>annually</td>
<td>half yearly</td>
<td>Quarterly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Interest (i)</td>
<td>(\frac{8}{100} + 1)</td>
<td>(\frac{8}{100} \div 2)</td>
<td>(\frac{8}{100} \div 4)</td>
<td>(\frac{8}{100} \div 12)</td>
</tr>
<tr>
<td>Period (n)</td>
<td>(6 \times 1 = 6)</td>
<td>(6 \times ? \div 2)</td>
<td>(6 \times ? \div 4)</td>
<td>(6 \times ? \div 12)</td>
</tr>
<tr>
<td>Principal (P)</td>
<td>18500</td>
<td>18500</td>
<td>18500</td>
<td>18500</td>
</tr>
<tr>
<td>Amount (A)</td>
<td>(A = P(1 + i)^n)</td>
</tr>
<tr>
<td></td>
<td>(= 18500(1 + \frac{8}{100})^6)</td>
<td>(= 18500(1 + ? \div 2)^3)</td>
<td>(= 18500(1 + ? \div 4)^3)</td>
<td>(= 18500(1 + ? \div 12)^3)</td>
</tr>
</tbody>
</table>

Therefore _________________ has chosen a better investment option.

2. An Estate Agency purchases a photo-copying machine for R85 000 and realise that they will have to replace it in 4 years’ time. They predict that the inflation rate will be 8% p.a. and that their machine will depreciate at a rate of 6% p.a. They thus create a sinking fund to take care of the inflation rate. Assuming that they will trade-in their present machine, what amount of money must be paid monthly into the fund if the interest rate is 12% p.a. compounded monthly?
Data | **Step 1** | **Step 2** | **Step 3** | **Step 4**
---|---|---|---|---
Price of the new machine in 4 year time after considering inflation rate | Trade in or book value of the old machine in 4 year time after considering depreciation rate | The value of the sinking fund (SF) being raised is: | The monthly instalment, \(x \), that should be paid into the fund (SF), is:

Interest (i)

\[
i = \frac{8}{100} + 1 = \frac{8}{100}
\]

\[
i = \frac{?}{100} +
\]

\[
? = \frac{?}{?}
\]

\[
SF \text{ is given by:}
\]

Step 1 (A) – Step 2 (A)

\[
R 115 641,56
\]

\[
= R 66 363,66
\]

\[
R 49 277,90
\]

\[
SF = Fv
\]

\[
Fv = \frac{x[(1 + i)^n - 1]}{i}
\]

\[
49 277,90
\]

\[
x[(1 + \frac{8}{100})^6 - 1]
\]

\[
= R 804,90
\]

Period (n)

\[
n = 4 \times 1 = 4
\]

\[
n = 4 \times ? = ?
\]

Principal (P)

\[
P = 85 000
\]

\[
P = 85 000
\]

\[
= R 66 363,66
\]

\[
= R 49 277,90
\]

Amount (A)

\[
A = P(1 + i)^n
\]

\[
A = 85 000 \left(1 + \frac{8}{100}\right)^6
\]

\[
= R 115 641,56
\]

\[
= 85 000 \left(1 - \frac{8}{100}\right)^6
\]

\[
= R 66 363,66
\]

\[
SF = R 49 277,90
\]

\[
x = R 804,90
\]
Assessment terms

Hereewith some of the assessment terms that you may encounter during this lesson.

<table>
<thead>
<tr>
<th>Term / Word</th>
<th>Explanation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate / Determine</td>
<td>The learner is expected to perform a mathematical calculation using a known formula or algorithm.</td>
<td>Rachel wishes to save for her retirement. She can afford to invest R8000 at the end of each month into an account which offers an interest rate of 11,2% p.a., compounded monthly for a period of 20 years. After 20 years she wants to stop depositing R8000 each month and intends to let the investment sum grow at 11,6% compounded quarterly until she has an amount of at least R26 million. Calculate, how long, correct to the nearest month will it take her to realise her goal?</td>
</tr>
</tbody>
</table>
| Show / Prove that … | The learner needs to use appropriate formulae to prove or disprove a claim made in the question. | Tebogo plans to retire in 40 years’ time. He has calculated that he needs an amount equivalent to the buying power of R1 million in today’s rands. He expects inflation to be an average of 8,5% p.a. during the 40 years.
 a) **Show** that he will need R26 133 015,58 in his account in 40 years’ time. |

Assessment

1. Tebogo plans to retire in 40 years’ time. He has calculated that he needs an amount equivalent to the buying power of R1 million in today’s rands. He expects inflation to be an average of 8,5% p.a. during the 40 years.
 a) **Show** that he will need R26133015,58 in his account in 40 years’ time.
 b) He plans to make equal monthly payments for the next 40 years, at the end of each month, into an account which offers an interest rate of 10,8% p.a. compounded monthly. Determine Tebogo’s monthly repayments.
2. Rachel wishes to save for her retirement. She can afford to invest R8000 at the end of each month into an account which offers an interest rate of 11,2% p.a., compounded monthly for a period of 20 years. After 20 years she wants to stop depositing R8000 each month and intends to let the investment sum grow at 11,6% compounded quarterly until she has an amount of at least R26 million. **Calculate**, how long, correct to the nearest month will it take her to realise her goal?
3. Equipment, when bought new is valued at R350 000,00. After 3 years it depreciates to R179 200,00, based on the reducing balance method. Calculate the annual rate of depreciation.
4. An amount of R20 000,00 is deposited into a new savings account at 9,75% p.a., compounded quarterly. After 18 months, a further R10 000,00 is deposited. After a further 3 months, the interest rate changes to 9,95% p.a. compounded monthly. Determine the balance in the account 3 years after the account was initially opened.

References:

Physical Sciences

Subject: Physical Sciences Grade 10
Topic: The periodic Table

Language aspects covered

Pre-activities
- Vocabulary
- Language used in the subject
- Prediction

Vocabulary
<table>
<thead>
<tr>
<th>Element</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Group</td>
</tr>
<tr>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Column</td>
<td>Noble</td>
</tr>
<tr>
<td>Affinity</td>
<td></td>
</tr>
</tbody>
</table>

Activity
The learners are given the following paragraph and asked to define the words in bold. They may look them up in a dictionary. The definitions are shared among members of the group or with the whole class. Use worksheet 1

“Elements are made up of small particles called atoms. These elements are arranged in rows called periods which are horizontal and also arranged in columns called groups which are vertical. Some elements are classified as noble gases and all elements have different electron affinities.”

During teaching
The teacher clarifies all the terms using scientific terms / meanings using the periodic table.

Assessment
Match each term on the left to the correct definition on the right.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>The horizontal rows in the periodic table</td>
</tr>
<tr>
<td>Noble gases</td>
<td>The vertical columns in the periodic table.</td>
</tr>
<tr>
<td>Period</td>
<td>Is a pure substance consisting of one type of atom</td>
</tr>
<tr>
<td>Group</td>
<td>Are found in group 18</td>
</tr>
<tr>
<td>Noble</td>
<td>Elements which are metals</td>
</tr>
</tbody>
</table>

Resources
- Periodic Table
- Worksheet

Worksheet 1

“Elements are made up of small particles called atoms. These elements are arranged in rows called periods which are horizontal and also arranged in columns called groups which are vertical. Some elements are classified as noble gases and all elements have different electron affinities”

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td></td>
</tr>
<tr>
<td>Noble</td>
<td></td>
</tr>
<tr>
<td>Affinity</td>
<td></td>
</tr>
</tbody>
</table>
Subject: Physical Sciences Grade 10

Topic: Magnetism

Lesson – content

Poles of permanent magnets, attraction and repulsion, magnetic field lines

Language aspects covered

<table>
<thead>
<tr>
<th>Pre-activities</th>
<th>Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vocabulary</td>
<td>Magnet</td>
</tr>
<tr>
<td>• Language used in the subject</td>
<td>Field</td>
</tr>
<tr>
<td>• Prediction</td>
<td>Pole</td>
</tr>
<tr>
<td></td>
<td>Opposite</td>
</tr>
<tr>
<td></td>
<td>Like</td>
</tr>
<tr>
<td></td>
<td>Attract</td>
</tr>
<tr>
<td></td>
<td>Repel</td>
</tr>
<tr>
<td></td>
<td>Spaced</td>
</tr>
<tr>
<td></td>
<td>Cross</td>
</tr>
<tr>
<td></td>
<td>Arrangements</td>
</tr>
</tbody>
</table>

The teacher will ask learners to give the meaning of the above terms during the lesson.

<table>
<thead>
<tr>
<th>During teaching</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Learners mention things, devices, etc. that contain magnets.</td>
<td></td>
</tr>
<tr>
<td>• Learners study the magnets and identify the poles (teacher helps them to understand the concept). They check which ones attract or repel (they are asked to give the meaning of the terms in bold)</td>
<td></td>
</tr>
<tr>
<td>• Learners are given two magnets, iron fillings, nails, white A4 sheets.</td>
<td></td>
</tr>
<tr>
<td>• Learners use iron fillings and compass to determine the pattern and direction of magnetic field lines.</td>
<td></td>
</tr>
<tr>
<td>• The learners will draw the magnetic field lines (Pattern).</td>
<td></td>
</tr>
</tbody>
</table>

Assessment

1. Label the sketch given below:

![Magnetic Field Lines](image)

2. Redraw these magnets in your classwork book and draw the magnetic field patterns.

![Magnetic Field Patterns](image)

Resources

- Bar magnet
- Iron fillings
- Nails
- Compass
- White A4 sheet
Subject: Physical Sciences Grade 11

Topic: Intermolecular Forces

Lesson – content

Language aspects covered

Pre-activities

- Vocabulary
- Language used in the subject
- Prediction

Vocabulary

Intermolecular [molecule]
- Prefixes: *inter*: ‘between’ or ‘among’
- *intra*: ‘within’ or ‘inside’

Homogenous
- *homo*: ‘same’

Polar

Induce

Force

Electronegativity

Dipole

Activity

Learners give more words starting with ‘inter’. E.g. *international*, etc. The teacher highlights the use of ‘inter’ before every word that follows it.

The teacher asks the learners to give their own interpretation of the concept *intermolecular forces*.

During teaching

Learners make models of HCl using plasticine or clay.

The teacher will ask the learners to use matchsticks to show intermolecular forces.

The teacher uses the same model to explain dipoles.

The teacher explains the different types of intermolecular forces and also gives their definitions.

Assessment

Answer the following questions. Choose the correct answer and write down only the letter corresponding to the chosen answer.

1.1. Forces between two polar molecules are called
 - A Hydrogen bonding
 - B Dipole-dipole forces
 - C Ion-dipole
 - D London forces

1.2. What causes dipole-dipole interactions?
 - A sharing of electron pairs
 - B bonding of a covalently-bonded hydrogen to a lone electron pair
 - C the random motion of electrons
 - D none of these

1.3. Why is hydrogen bonding only possible with hydrogen?
 - A hydrogen is the least electronegative element known.
 - B the size of a hydrogen atom is similar to that of oxygen, nitrogen, and fluorine.
 - C hydrogen is bonded to a highly electronegative element
 - D all of the above.

Resources

- Plasticine
- Matchsticks
<table>
<thead>
<tr>
<th>Subject:</th>
<th>Physical Sciences Grade 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic:</td>
<td>Newton's Laws</td>
</tr>
<tr>
<td>Lesson – content</td>
<td></td>
</tr>
</tbody>
</table>

Language aspects covered

Pre-activities
- Vocabulary
- Language used in the subject
- Prediction

Vocabulary
- Normal
- Plane
- Perpendicular
- Relative
- Exerts
- Static
- Parallel
- Proportional
- Inclined
- Weight
- Component

Activity
Learners look up the listed words in a dictionary

Teacher: Divides the learners into groups of six and each learner is assigned a term to look up. The teacher moves around checking the learners spelling.

Learners: Each learner looks up and writes the definition of the term assigned to him/her. Each learner reads his/her definition and the other learners write it down.

During teaching

Activity

The teacher assists the learners to come up with scientific meanings; definitions are linked with diagrams/drawings.

E.g. for the term ‘parallel’, lines are drawn.

The teacher asks the learners to name the types of forces they know; each type goes with an explanation and an example/demonstration where possible.

Assessment

Identify and label the forces in the following diagram.

![Diagram](image)

Answers:
- A: normal force
- B: tension
- C: weight / gravitational force
- D: tension
- E: Weight

Resources
- Dictionary
- Writing material
- Lab resources
| Subject: Physical Sciences Grade 11 | |
| Topic: Ohm’s Law | |
| Lesson – content Verifying Ohm’s Law | |
| Language aspects covered | |

Pre-activities

- **Vocabulary**
- **Language used in the subject**
- **Prediction**

Activity (10 minutes)
- Learners are given an instruction sheet for the experiment.
- They read the instructions individually and then in small groups they discuss the method, etc. to ensure that they have a common understanding.
- They allocate duties to each other.

Vocabulary
- Series
- Parallel
- Proportionality
- Constant
- Increase / decrease
- Conductor
- Relationship

During teaching

Activity (20 minutes)
- The learners collect the apparatus.
- The precautions are discussed.
- The learners start connecting the apparatus with the teacher monitoring the connection of the apparatus.
- Readings are taken.

Assessment

The learners write individual reports for the experiment using the supplied worksheet.

Resources

- Lab equipment
- Worksheet / Instruction sheet
VERIFICATION OF OHM’S LAW

Name: __________________________
Class: __________________________

Activity 1

Aim: Investigating the relationship between the potential difference (v) across a resistor / conductor and the current (I) in the resistor (Ohm’s Law).

Apparatus:
• 3 cells
• Resistor
• Voltmeter
• Ammeter
• Variable resistor / rheostat
• Switch
• Connecting wires

Precautions
1. All the connections must be very tight.
2. Record the current at the regular interval of potential difference.
3. While changing the potential difference, rheostat must be moved in one direction only.
4. Do not pass a large current through the resistor.
5. While measuring the potential difference and current the needle of meters should not move out of the scale, i.e. when connecting the positive terminal start with the one having the highest calibration / scale.

Procedure:
1. Set up a circuit as illustrated in the Diagram 1.
2. Close the switch, take the ammeter and voltmeter readings quickly and open the switch.
3. Adjust the variable resistor and repeat step 2.
4. Repeat step 3 twice.
5. Record your results in the table below.

<table>
<thead>
<tr>
<th>Ammeter reading (A)</th>
<th>Voltmeter reading (V)</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Use the information in your table to draw a graph illustrating the relationship between the potential difference (V) and the current (I). Use graph paper.
7. Analyse your results and graph and write down a conclusion for your activity.
Subject: Physical Sciences Grade 12

Topic: Acids and Bases

Lesson – content

Language aspects covered

Pre-activities
• Vocabulary
• Language used in the subject
• Prediction

The teacher gives the learners the following words and the learners write down their antonyms:

<table>
<thead>
<tr>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated</td>
<td>dilute</td>
</tr>
<tr>
<td>Completely</td>
<td>incompletely</td>
</tr>
</tbody>
</table>

Vocabulary
The learners must look up these words in a dictionary.
Donor
Ionise
Dissociate

During teaching

Activity (15 minutes)
• The teacher brings vinegar, lemon juice, water, bicarbonate of soda and Handy Andy.
• Learners will be given vinegar, lemon juice, and bicarbonate of soda to taste.
• The learners will describe the taste.
• All learners will rub all the chemicals between their fingers and describe how they feel like.

Activity (25 minutes)
The teacher gives a scientific definition of an acid and a base according to Arrhenius and Lowry-Brensted theories.

Assessment
1. Define an Arrhenius base
2. Differentiate between
 (a) a weak acid and strong acid.
 (b) a concentrated base and dilute base.

Resources
• Vinegar
• Lemon juice
• Handy Andy
• Bicarbonate of soda
• Water
• Glasses
Subject: Physical Sciences Grade 12
Topic: Work, Energy and Power
Lesson – content Conservative and non-conservative forces

Language aspects covered

Pre-activities
- Vocabulary
- Language used in the subject
- Prediction

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>Energy</td>
</tr>
<tr>
<td>Force</td>
<td>Incline</td>
</tr>
<tr>
<td>Net</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Vertical</td>
<td>Resultant</td>
</tr>
<tr>
<td>Displacement</td>
<td>Angle</td>
</tr>
<tr>
<td>Change (Δ)</td>
<td>Conservative</td>
</tr>
<tr>
<td>Non-conservative</td>
<td>Components</td>
</tr>
<tr>
<td>Pull</td>
<td>Push</td>
</tr>
</tbody>
</table>

Activity

The teacher will reinforce the other terms that were dealt with in the previous lessons. The teacher asks the learners to give their own understanding of the words *Conservative* and *Non-conservative*.

During teaching

Activity

The learners will be given a worksheet with the following diagram and questions:

A learner pulls a crate along a flat surface from point A to B.

![Diagram of crate on flat surface](image)

Calculate the work done if:

a) The learner pulls the crate directly from A to B.
b) The learner pulls the crate from A to C, then to B.

The teacher defines a **non-conservative** force using the results of the values calculated by the learners.

A worker wants to load a 50 kg drum on to a truck. Calculate the work done against gravity if:

a) The drum is lifted vertically up on to the 1 m high truck load bed.
b) The drum is rolled up a 2 m long ramp inclined at 30°.

The teacher defines a conservative force using the learner’s answers.

Assessment

Define the following terms:

a) A conservative force
b) A non-conservative force

Resources

- Worksheets
Subject: Physical Sciences Grade 12
Topic: Momentum

Lesson – content

Language aspects covered

Pre-activities

Vocabulary
- Momentum
- State
- Linear
- Net
- Final
- Initial
- Resultant
- Relationship

Activity

Learners give their own understanding of the term ‘momentum’.

During teaching

Activity

- One learner throws a tennis ball to another learner, and then the same learner throws a soccer ball to his / her partner at the same speed.
- The learner is asked to decide which of the two is difficult to catch. A second pair is requested to do the same demonstration with a tennis ball, initial the ball is thrown at a slower pace and the other learner catches it, and then the thrower throws the same ball at a faster pace.
- The teacher will explain that the quantity experienced has something to do with momentum.
- The teacher gives the definition of momentum, referring to the formula, \(p = mv \).

The learners are given the following activity:

1. (a) Calculate the momentum of a 5 000 kg bus moving due west at 10 m·s\(^{-1}\).

 (b) Calculate the momentum of the same bus travelling at 20 m·s\(^{-1}\) due west.

2. (a) Calculate the momentum of a 2 800 kg bakkie travelling at 5 m·s\(^{-1}\) due north.

 (b) Calculate the momentum of a 1 200 kg hatchback travelling at 5 m·s\(^{-1}\) due north.

Assessment

1. The momentum of a car with mass \(m \) and velocity \(v \) is 200 kg·m·s\(^{-1}\) East. What will be its momentum if its velocity is made 5 times bigger?

2. The momentum of a car with mass 1200 kg and velocity 6000 kg·m·s\(^{-1}\) to the right. Calculate the magnitude of the velocity \(v \).

Resources

- Tennis ball
- Soccer ball
Mathematical Literacy

GRADE 10

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>SECTION</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBABILITY</td>
<td>Representation for determining possible outcome</td>
<td>Tree-diagram</td>
</tr>
</tbody>
</table>

PRE-ACTIVITY

Terminology

- **Probability [mathematical]**: The results of a trial or experiment expressed as a fraction: the number of favourable outcomes divided by number of all possible outcomes.
- **Probability [of an outcome]**: The likelihood of a particular outcome occurring, expressed as a number between zero and one.
- **Likely/likelihood**: The chance of something happening is greater than the chance of it not happening.
- **Event**: An activity, e.g. rolling a single die.
- **Compound events**: Two or more events that happen, e.g. tossing a coin and rolling a dice.
- **Fifty-fifty (even) outcome**: The chances of something happening or not happening are the same.
- **Outcome**: Result of a trial (experiment).
- **Outcome [fair]**: All outcomes are equally likely to occur.
- **Possible outcome**: The chance that an event will occur.
- **Impossible outcome**: No chance of the outcome happening, e.g. getting a 7 with an ordinary six-sided dice.
- **Prediction**: A statement describing the chance of an outcome happening, based on given information.
- **Represent [data]**: Draw; graph.
- **Tree diagram**: A diagram that uses branches to display all the outcomes of a series of trials.
LESSON PRESENTATION

Introduction:

Pre-knowledge

- **Definition of probability**
- **Expression of probability**
 - Decimal
 - Fraction
 - Percentage
- **Prediction**
 - Likelihood
 - A fifty-fifty chance
 - Impossible

Note: Probability of an event is not between 0 and 1, instead it ranges from 0 to 1. Furthermore the probability of an event can be 1, where the chance of an event to happen is certain.

| 0 | 1/2 | 1 |

Mention ways in which probability can be represented, i.e. two way table and tree diagram. For the purpose of the lesson we will focus on tree diagram.

Experiment:

Tossing a coin

- **Unfolding terminology used when tossing a coin:**
 - Event: Tossing a coin a number of times (e.g. twice)
 - Fair and unfair outcome
 - Outcomes: Head or tail

- **Twice means the same coin is tossed two times:**
 - 1st time → Outcome 1
 - 2nd time → Outcome 2
 - Fair: all outcomes are equally likely to occur, and
 - Unfair: one outcome has more chances than others.

Representation:

Represent the outcomes by drawing a tree-diagram.

- Draw a tree diagram

Tossing a coin once

![Coin Diagram]

Although a tree is commonly known as a plant, this is not the case in probability.

Language Issues

Whilst the word “fair” may be used as a **noun**, denoting an outdoor entertainment or a commercial exhibition, or as an **adverb** (as in: *He has always played fair with me*), or as a **verb** (meaning to smooth or streamline the surface of something such as a table top), it is mostly used as an **ADJECTIVE** meaning quite a number of things. Depending on the context within which it is used, the word fair would have different meanings as shown below:

- **reasonable or unbiased:** a fair decision
- **done properly or according to the rules:** fair and free elections
- **not stormy or cloudy, clear, and without much wind:** fair weather
- **pleasing to look at, beautiful or pleasing to the eye:** a fair maiden
- **not blocked, clear and unobstructed:** a fair view
- **sizeable, reasonably large in size or quantity:** They had a fair number of responses to the advertisement
- **acceptable or average:** Your performance this year has been only fair.
- **moderately good or reasonable:** a fair understanding
- **not marred by any blemish or stain:** to preserve your fair name

A fair die in the context of probability is discussed below.
Tossing a coin twice

Interpretation:

Tossing a coin twice

Outcomes

Coin

Tossing a coin twice

Outcomes

Tree Diagram
<table>
<thead>
<tr>
<th>Assessment Words</th>
<th>What is required of you</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate</td>
<td>This means a numerical answer is required – in general, you should show your working, especially where two or more steps are involved</td>
</tr>
<tr>
<td>Define</td>
<td>Give a clear meaning</td>
</tr>
<tr>
<td>Describe</td>
<td>Describe State in words (using diagrams where appropriate) the main points of a structure / process / phenomenon / investigation</td>
</tr>
<tr>
<td>Determine</td>
<td>To calculate something, or to discover the answer by examining evidence</td>
</tr>
<tr>
<td>Explain</td>
<td>Make clear; interpret and spell out</td>
</tr>
<tr>
<td>Identify</td>
<td>Name the essential characteristics</td>
</tr>
<tr>
<td>Label</td>
<td>Identify on a diagram or drawing</td>
</tr>
<tr>
<td>List</td>
<td>Write a list of items, with no additional detail</td>
</tr>
<tr>
<td>State</td>
<td>State Write down information without discussion</td>
</tr>
<tr>
<td>Tabulate</td>
<td>Draw a table and indicate the answers as direct pairs</td>
</tr>
<tr>
<td>Assessment</td>
<td>Ask questions based on tossing a coin and rolling a die</td>
</tr>
</tbody>
</table>

Question 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Language aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>How many possible outcomes are found in rolling a die once?</td>
<td>The key word here is “possible”, without which the answer would have been 1. That is, for each roll of a die there can only be one outcome.</td>
</tr>
<tr>
<td>Answer: 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Complete the following tree diagram by drawing outcomes of A, B and C:</td>
<td>The tree diagram has to be completed by “… drawing outcomes of A, B and C”. In other words, the complete diagram is required here, not to draw as in “deducing” what values of A, B and C would be.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Answer:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Answer:

![Tree Diagram](attachment:image.png)
1.3 Determine the probability of getting a 6 when rolling a die twice?

This question has potential to be misinterpreted as rolling two dice simultaneously. When two dice are thrown simultaneously, the number of events can be $6^2 = 36$ because each die has 1 to 6 number on its faces. Then the possible outcomes are shown in the table below (where the outcomes come in doubles):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
</tr>
<tr>
<td>2</td>
<td>(2,1)</td>
<td>(2,2)</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
</tr>
<tr>
<td>3</td>
<td>(3,1)</td>
<td>(3,2)</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>4</td>
<td>(4,1)</td>
<td>(4,2)</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
</tr>
<tr>
<td>5</td>
<td>(5,1)</td>
<td>(5,2)</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
</tr>
<tr>
<td>6</td>
<td>(6,1)</td>
<td>(6,2)</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
</tr>
</tbody>
</table>

The question then becomes how can we get “a 6” when outcomes are now in doubles? A 6 from one die regardless of the outcome of the other die? If that is the case which die to look at if they came in two different colours (say blue and red)? What if both give the same outcome 6?

Answer: $\frac{1}{36}$

1.4 A die was rolled twice, the outcome of the 1st roll was 3. What is the probability of getting an even number when rolling the die for the second time?

The probability of getting an even number when rolling a die is not dependent on the outcome of the outcome of the previous roll. These events are independent.

Answer: $\frac{3}{6}$
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>SECTION</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASUREMENT</td>
<td>Volume, Area and Perimeter</td>
<td>Calculate / measure the perimeter, area (including surface area) and/or volume of objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• direct measurement (perimeter using rulers, etc.; area using grids, etc.; and volume using measuring jugs, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• calculation for each of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ rectangles, triangles and circles (quarter, semi and three-quarters) using known formulae [the singular form is formula]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ rectangular prisms and cylinders using known formulae</td>
</tr>
</tbody>
</table>

PRE-ACTIVITY

Terminology

<table>
<thead>
<tr>
<th>Area</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of a region</td>
<td>The amount of space which it occupies. It is measured in squares.</td>
</tr>
<tr>
<td>2-D drawings</td>
<td>A shape with two (2) dimensions and no thickness.</td>
</tr>
<tr>
<td>2-dimensional plans</td>
<td>A plan or design possibly representing three dimensional objects</td>
</tr>
<tr>
<td>3-dimensional models</td>
<td>A dimensional construction of a real-life object. It is a solid, it has length, breadth/width and height</td>
</tr>
<tr>
<td>Capacity</td>
<td>The amount of space available to hold something</td>
</tr>
<tr>
<td>OR</td>
<td>Measure of the volume a hollow object can hold. Usually measured in litres</td>
</tr>
<tr>
<td>Circle</td>
<td>A closed curve that is everywhere at the same distance from a fixed point</td>
</tr>
<tr>
<td>Circumference</td>
<td>Distance around a circle / perimeter of a circle</td>
</tr>
<tr>
<td>Cylinder</td>
<td>A geometric solid that is very common in everyday life, such as a can.</td>
</tr>
<tr>
<td>Diameter</td>
<td>A straight line passing through the centre of a circle and touching the circle at both ends thus dividing the circle into two equal halves.</td>
</tr>
<tr>
<td>Distance</td>
<td>How far it is from one place to another, e.g. from one town to another.</td>
</tr>
<tr>
<td></td>
<td>Usually measured in kilometres, and does not have to be in a straight line.</td>
</tr>
<tr>
<td>Face</td>
<td>In any geometric solid that is composed of flat surfaces, each flat surface is called a face.</td>
</tr>
<tr>
<td>Hypotenuse</td>
<td>The side of a right angled triangle that is opposite the right angle.</td>
</tr>
<tr>
<td>Length</td>
<td>The measurement between two points, in a straight line, e.g. the length of a room</td>
</tr>
<tr>
<td>Measuring</td>
<td>Determining the value of a quantity directly, e.g. reading the length of an object from a ruler or the mass of an object from a scale.</td>
</tr>
<tr>
<td>Perimeter</td>
<td>The total distance around the boundary or edge that outlines a specific shape.</td>
</tr>
<tr>
<td>Pi</td>
<td>The value obtained when dividing the circumference of the circle by its diameter.</td>
</tr>
<tr>
<td>Prism</td>
<td>A three dimensional object, such as a cylinder with two identical faces at opposite ends. There are triangular, rectangular and circular prisms.</td>
</tr>
<tr>
<td>Quadrilateral</td>
<td>A polygon with four sides</td>
</tr>
<tr>
<td>Radius</td>
<td>The distance from the centre of the circle to any point on the circumference of the circle. Half of diameter</td>
</tr>
<tr>
<td>Surface area</td>
<td>The areas of all the faces / surfaces of an object added together</td>
</tr>
<tr>
<td>Unit of measurement</td>
<td>A standard amount of a physical quantity</td>
</tr>
<tr>
<td>Volume</td>
<td>The amount of 3-D space occupied by an object. It is measured in cubic units</td>
</tr>
</tbody>
</table>
Introduction

Language Aspects

Because mathematical language is highly *symbolic*, learners often experience difficulties in understanding what the symbols used actually stand for. For instance, the “D” in 2-D stands for *dimension*. Now the question becomes what is a dimension?

Dimension defined: In very simple terms, a dimension is a measurement of size of something in one or more directions such as length, width, or height as in the case of the dimensions of a room.

Now consider the floor of a room. It can only be measured by its length and its width. This means the floor has two dimensions and therefore it is a **2-D Shape**.

In Mathematics there is this tendency to simply refer to a 2-D shape as “a 2-D”, and leave out the “shape”. Although this is taken as understood, it should not create confusion like where objects like a sheet of ceiling board (even a sheet of paper!) is regarded as a 2-D.

A 2-D is sometimes wrongfully conceptualised as the shape with *length* and *width*, when in fact depending on the shape of the figure, the dimensions will differ. While it is true that a rectangle is measured by its length and width, the two dimensions for a triangle are *base* and *height* and those of a circle are *radius* and *circumference*.

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>Language Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-knowledge</td>
<td>Revision about 2-D</td>
</tr>
</tbody>
</table>
| *2-D Shapes* | *Because mathematical language is highly symbolic, learners often experience difficulties in understanding what the symbols used actually stand for. For instance, the “D” in 2-D stands for dimension. Now the question becomes what is a dimension?*
| • Square | Dimension defined: In very simple terms, a dimension is a measurement of size of something in one or more directions such as length, width, or height as in the case of the dimensions of a room.* |
| • Rectangle | Now consider the floor of a room. It can only be measured by its length and its width. This means the floor has two dimensions and therefore it is a **2-D Shape**.* |
| • Circles | In Mathematics there is this tendency to simply refer to a 2-D shape as “a 2-D”, and leave out the “shape”. Although this is taken as understood, it should not create confusion like where objects like a sheet of ceiling board (even a sheet of paper!) is regarded as a 2-D.* |
| • Triangle | A 2-D is sometimes wrongfully conceptualised as the shape with *length* and *width*, when in fact depending on the shape of the figure, the dimensions will differ. While it is true that a rectangle is measured by its length and width, the two dimensions for a triangle are *base* and *height* and those of a circle are *radius* and *circumference*. |
| Related to the calculation of *Area, Perimeter* | |
Rectangular box

Surface area of a rectangular box = \(2(\ell \times w) + 2(\ell \times h) + 2(w \times h)\)

To calculate the surface area, we calculate the area of each flat surface separately:

\[
\text{Surface area} = \text{Area of F1} + \text{Area of F2} + \text{Area of F3} + \text{Area of F4} + \text{Area of F5} + \text{Area of F6}
\]

\[
= (3\text{cm} \times 6\text{cm}) + (3\text{cm} \times 8\text{cm}) + (6\text{cm} \times 8\text{cm}) + (3\text{cm} \times 8\text{cm}) + (3\text{cm} \times 6\text{cm}) + 6\text{cm} \times 8\text{cm})
\]

\[
= 18\text{cm}^2 + 24\text{cm}^2 + 48\text{cm}^2 + 24\text{cm}^2 + 18\text{cm}^2 + 48\text{cm}^2
\]

\[
= 180\text{cm}^2
\]

Which can also be written as:

\[
\text{Surface area} = 2(3\text{cm} \times 6\text{cm}) + 2(3\text{cm} \times 8\text{cm}) + 2(6\text{cm} \times 8\text{cm})
\]

\[
= 36\text{cm}^2 + 48\text{cm}^2 + 96\text{cm}^2
\]

\[
= 180\text{cm}^2
\]

In 2-D and 3-D: dimensions and faces, which is which?

For 3-D means three dimensional shape that has more than one “face” (e.g. cube, rectangular prism and cylinder), a 2-D can be regarded as ONE of the faces of the 3-D.

There is this tendency amongst learners to relate the words ‘2-D’ and ‘3-D’ to the number of faces; two faces and three faces, respectively. This is incorrect.

Furthermore, a triangle is incorrectly interpreted as a 3-D shape simply because it has three sides.

Area vs Surface Area:

AREA: From the definitions of ‘area’ and ‘2-D’ provided above, it follows that area is in fact the amount of two-dimensional (2-D) space occupied by a 2-D shape. In other words, an area of a shape is the size of its surface measured in square units.

NOTE: In an ‘ordinary’ English use, the area would also refer to a field of knowledge or even a geographical region or district.

SURFACE AREA: In English flu symptoms means symptoms of flu. With this in mind, would surface area therefore mean area of a surface? Consider an area as part of a surface, then surface area would be the area of the entire surface. It is with this view that given, say, a rectangular box, the sum of the areas of all the faces is usually referred to as surface area.

Note: In essence, the area of a surface can also be the surface area of an object, depending on the context related to.

If the box is open, it means one area is not going to be added.
SURFACE AREA OF A CYLINDER

Surface area of a cylinder = \(2\pi r^2 + 2\pi rh\)

The surface area of a (closed) cylinder can be found by breaking it down into three parts:
- The two circles that make up the ends of the cylinder.
- The side of the cylinder, which when “unrolled” is a rectangle.

That is, to calculate the surface area of the cylinder we calculate the sum of the areas of the two circular disks and the rectangle as shown below:

When learners are asked to calculate the surface area of a cylinder, they take the cylinder as a solid figure; but if you take a cylinder apart, you find that it has two ends, called bases, which are usually circular. The bases are always congruent and parallel to each other. If you were to “unroll” the cylinder you would find the side is actually a rectangle when flattened out.

Understanding Pi (\(\pi\)): When the length of the circumference of a circle is divided by the length of its diameter, the result is always the same number. This number is slightly more than 3 and is symbolised by the Greek letter \(\pi\), pronounced pi (as in pie).

That is,
\[\text{Circumference (C)} = \pi\text{ diameter (d)}\]
Or \(C = \pi d\)
Or \(C = 2\pi r\) (since \(d = 2r\))

ASSESSMENT

<table>
<thead>
<tr>
<th>Assessment Words</th>
<th>What is required of you</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td>Express in words</td>
</tr>
<tr>
<td>Calculate</td>
<td>Work out</td>
</tr>
<tr>
<td>Determine</td>
<td>Establish exactly by calculation.</td>
</tr>
<tr>
<td>Estimate</td>
<td>To make an educated guess about what the answer of a calculation will be without actually calculating accurately, or what the value of a measurement e.g. length will be without actually measuring.</td>
</tr>
<tr>
<td>Express</td>
<td>Write as ...</td>
</tr>
<tr>
<td>Investigate</td>
<td>Examine; look into; study</td>
</tr>
<tr>
<td>Measure</td>
<td>Using an instrument to determine size</td>
</tr>
<tr>
<td>Rounding off</td>
<td>To decide to cut off a number at a certain digit to minimise errors</td>
</tr>
<tr>
<td>Substitution</td>
<td>To replace a variable by a specific value</td>
</tr>
</tbody>
</table>
QUESTION 1

Water is scarce in South Africa. The annual average rain fall is 446 mm. According to Statistics South Africa (www.statssa.gov.za) 88,6% of the South African population has access to drinking water. The measurements of a water tank are given in metres. The water tank’s radius is 14 m and its height is 10m.

<table>
<thead>
<tr>
<th>QUESTIONS AND SOLUTIONS</th>
<th>LANGUAGE ASPECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Explain the difference between diameter and radius. (2)</td>
<td>In the context of Maths “difference” between x and y means “x – y”. Then there is chance for learners to view “difference between diameter and radius” as 2r – r = r. (ARGUMENT: Would this be the correct answer if the question was “What is the difference between diameter and radius?”) On the other hand learners could provide definitions of the two concepts to demonstrate the difference between the two concepts. Instead of explaining the difference learners tend to give a relationship between the two i.e. radius is of half diameter.</td>
</tr>
<tr>
<td>Solution: Diameter touches the circle at both ends thus dividing the circle into two equal halves. ✓ The distance from the centre of the circle to any point on the circumference of the circle. ✓</td>
<td></td>
</tr>
<tr>
<td>1.2. Determine the diameter of the water tank. (2)</td>
<td>To answer this question it requires learners to calculate diameter using the relationship between radius and diameter. Learners must show by calculation how they got the answer.</td>
</tr>
<tr>
<td>Solution: Diameter = 2 x 14m = 28m ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>1.3. The lid of the water tank must be painted on the outside in order for it to be clearly visible. Calculate the area of the lid (in m²) if it has a radius of 14 m.</td>
<td>This question is clouded with “noise” that is used as context, making language a barrier to what is needed. The first sentence could be taken to where it is needed, say the next question (Q1.4)</td>
</tr>
<tr>
<td>Use the formula: Area = $\pi \times (\text{radius})^2$, where $\pi = 3.142$. (2)</td>
<td></td>
</tr>
<tr>
<td>Solution: Area = $\pi \times (\text{radius})^2$ = 3,142 x 14² ✓ = 615.44 ✓</td>
<td></td>
</tr>
<tr>
<td>1.4. A one-litre tin of paint covers an area of 15 m². Calculate the area that can be covered with 17 litres of paint. (2)</td>
<td></td>
</tr>
<tr>
<td>Solution: 17 x 15 ✓ = 255 ✓ m²</td>
<td></td>
</tr>
</tbody>
</table>
The inside of the tank must be sealed with waterproof paint. The lid does not get waterproofed on the inside. Calculate the interior surface area (in m²) by using the following formula.

Inside area = (2 × π × r × h) + (π × r²), where π = 3,14, r = radius and h = height / depth of the water tank. (3)

Solution:

Interior surface area = (2 × π × r × h) + (π × r²)

= (2 × 3,14 × 14 × 10) + (3,14 × (14))²

= 879,2 + 615,44

= 1 494,64 m²

Mrs Thabekhulu runs a small business from her home. She buys different types of laundry baskets to cover the inside of the baskets with fabric. Then she resells them.

The dimensions are as follows:

![Rectangular Laundry Basket](image1)

The dimensions are as follows:

- **b = 40 cm**
- **l = 60 cm**
- **h = 1 m**

![Cylindrical Laundry Basket](image2)

- **r = 35 cm**
- **h = 1 m**

QUESTION 2

2.1. How much fabric will Mrs Thabekhulu need (in m²) to cover the sides and base on the inside (but not the lid) of a rectangular laundry basket?

Use the following formulae: Surface area = (l × b) + 2 (l × h) + 2 (b × h)

2.2. Calculate the amount of fabric needed to cover the base and sides of the inside of the cylindrical laundry basket? Round off your answer to the nearest m².

Use the formula: Surface area = (π × r²) + (2 × π × r × h), use π = 3,14
Finance

Taxation (income tax)

CONTENT

Calculating personal income tax:
- Use both the tax deductions tables and the tax brackets to investigate how the tax value on a payslip is calculated.
- Investigate the impact of an increase in salary on the amount of tax payable.
- Find reasons for differences in tax values calculated using tax deduction tables and tax brackets.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net pay</td>
<td></td>
<td>The amount an employee “takes home” after income tax has been deducted.</td>
</tr>
<tr>
<td>Gross income</td>
<td></td>
<td>The total amount of all individual’s or business’ income before deductions.</td>
</tr>
<tr>
<td>PAYE (abbr.)</td>
<td></td>
<td>Pay as you earn: tax taken off your earnings by your employer and sent to the South African Revenue Service before you are paid (the balance).</td>
</tr>
<tr>
<td>Salary</td>
<td></td>
<td>An amount of money paid for the work you do. (This is normally paid monthly.)</td>
</tr>
<tr>
<td>Tax</td>
<td></td>
<td>A compulsory levy imposed on citizen’s earnings or purchases to fund the activities of government.</td>
</tr>
<tr>
<td>Taxable</td>
<td></td>
<td>A service, purchase or item or earning that has tax applied to it.</td>
</tr>
<tr>
<td>UIF (abbr.)</td>
<td></td>
<td>Unemployment Insurance Fund: A government-run insurance fund which employers and employees contribute to, so that when employees are retrenched they can collect some earnings (a portion).</td>
</tr>
<tr>
<td>VAT (abbr.)</td>
<td>Value Added Tax</td>
<td>A tax that is levied at 14% (currently in South Africa) on most goods and services, as well as on the importation of goods and services into South Africa.</td>
</tr>
<tr>
<td>VAT exclusive price</td>
<td></td>
<td>The price before VAT is added [exclusive - exclude].</td>
</tr>
<tr>
<td>VAT inclusive price</td>
<td></td>
<td>The price after VAT is added [inclusive - include].</td>
</tr>
<tr>
<td>Wages</td>
<td></td>
<td>A wage is an amount of money paid to an employee normally based on a fixed number of hours worked per week.</td>
</tr>
<tr>
<td>Income tax</td>
<td></td>
<td>It is the amount of money one must pay to the South African Revenue Services (SARS) for earning an income.</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td>Is the money that an individual or business receives in exchange for providing a good or service.</td>
</tr>
<tr>
<td>Zero rated VAT items</td>
<td></td>
<td>These are goods that are exempt from VAT. Groceries that are basic foodstuffs are zero-rated in South Africa, e.g. brown bread, milk, mielie meal, samp, rice, etc.</td>
</tr>
<tr>
<td>Deduction</td>
<td></td>
<td>Expenditure or losses actually incurred by a person during a tax year in the course of producing income which that person is allowed to deduct against that income.</td>
</tr>
<tr>
<td>Tax threshold</td>
<td></td>
<td>The level of income or money earned above which people or companies must pay tax.</td>
</tr>
<tr>
<td>Rebates</td>
<td></td>
<td>Tax relief given to all tax payers.</td>
</tr>
<tr>
<td>Pension</td>
<td></td>
<td>It is a fund established by an employer to facilitate and organize the investment of employees’ retirement funds contributed by the employer and employees.</td>
</tr>
<tr>
<td>Notch salary</td>
<td></td>
<td>Annual basic salary.</td>
</tr>
</tbody>
</table>
INTRODUCTION

Pre-knowledge
- Calculation of VAT
- VAT inclusive price
- VAT exclusive price
- Zero rated VAT items

NB: Calculating a “VAT exclusive price” from a “VAT inclusive price” means dividing the VAT inclusive price by 114% to reverse it to 100%.

Language aspects
- Value added tax (VAT) is the indirect tax on the domestic consumption of goods and services, except those that are zero-rated
- Zero rated items means items whose rate of tax is nil on their input supplies
- VAT inclusive price is 114% of the original price.

Since VAT Exclusive price is the price before VAT is added, it is simply 100% of the original price

Misconception: Calculating a “VAT exclusive price” from a “VAT inclusive price” means subtracting 14% from the VAT inclusive price.

Explanation of terminology on a salary slip

- Notch salary

Gross salary
- Is the amount of money earned before any deductions such as medical aid, pension contributions, UIF, and PAYE are done.

Deductions
- Money taken from earnings before payment is processed.

Net salary
- Is the remaining amount of money paid after all deductions were done.

Language aspects
- Teachers only limit the definition of gross to gross salary, the actual definition of gross is not elaborated. Instead teachers should define gross as an independent word before explaining gross salary. Not every “gross” is a gross salary: gross means without deductions; total, as the amount of sales, salary, profit

Misconception
Learners confuse basic salary with gross salary. Gross salary is the sum of the basic salary plus all benefits.

PRESENTATION

TAXATION

Two types of tax
- VAT – Compulsory tax
- Income tax-Paid by everyone or business earning a salary

Language aspects
- Taxation and tax are confused to be meaning the same thing. While tax is a levy, taxation is a means by which governments finance their expenditure by imposing charges on citizens and corporate entities.

KEY CONCEPTS

- **Income tax**
 - It is the amount of money one must pay to the South African Revenue Services (SARS) for earning an income.
 - Examples of earnings an individual may receive include remuneration (income from employment) such as salaries, wages, overtime pay, etc.
 - Income tax amount varies from one individual to another depending on the amount earned.

Tax refund
- Tax refund is given to someone who has, over a year, paid more tax than he/she should have.

Pay-As–You-Earn (PAYE)
- Income tax deducted from the earnings

Language aspects
- Income refers to the money we receive whereas “income tax” is the money that you pay from the “income”.

For both terms has the word “income”, there could be a misconception that in both cases money is “coming in” when in one instance money is “going out”.

Learners think income tax is calculated from salary only. Whereas it is calculated from every source of income.
CALCULATING INCOME

TAX

Step 1:
- Determine the annual income
- Multiply the monthly salary by 12 to make it the annual salary and add extra benefits

Definition
Annual income refers to all the income one earned over the year in wages, salary, tips, bonuses, commissions, and overtime amount.

Misconception
Usage of only annual salary to calculate annual income, other benefits are excluded. All annual earnings should be added to calculate annual income.

Step 2:
Calculate non-taxable income
- UIF: 1% of income
- Pension fund: 7.5%
- Donations
- Child support payments

(A donation will be exempted if the total value of donations for a year of assessment does not exceed:
- Casual gifts by companies and trusts: R10 000.
- Donations by individuals: R100 000)

Note:
A donation is a gift given by legal persons, typically for charitable purposes and/or to benefit a cause and is considered when calculating non-taxable income.

Issue: How do you “legalise” a person? The gift has to be given to an organisation that is registered under section 18A.

Step 3:
Calculating the taxable income by subtracting non-taxable income from the total income

Step 4
Tax threshold
- Check if the person qualifies to pay tax by using the tax threshold
 The income level at which a person begins paying income **taxes**
- The people earning lower than the tax threshold do not pay tax

For threshold means point of entering, in this context it refers to the entrance level to qualify to pay tax

Step 5:
Identify the correct tax bracket, write down the correct rate and calculate payable tax before the rebates and medical credits could be subtracted, using BODMAS.

BODMAS is an acronym for brackets, orders, division, multiplication, addition and subtraction, and determines the order of operations. Learners and teachers commonly use this acronym as brackets, of, division, multiplication, addition and subtraction, and this brings about confusion when other orders are omitted after the Brackets.
Step 6:

Identify the correct rebate

Calculate the annual medical credits.

Subtract the rebate and medical credits from the calculated tax in step 4.

Rebate:
- The tax relief provided; it is deducted after annual tax has been calculated.
- The older the citizen, the higher the rebate.
- People younger than 60 receive the primary rebate (compulsory rebate to every citizen).
- People above 65 qualify for both the primary and secondary rebate.
- People above 75 qualify for the primary, secondary and tertiary rebate (the highest rebate).

Medical tax credit
- Is the fixed monthly medical rebate aimed at relieving personal tax; irrespective of the income.
- The more the number of dependents the higher the medical tax credit; the person’s tax bracket is not considered.
- The medical credit depends on the number of dependents.
- The medical credit allocated to the first dependent equals to that of the main member; thereafter the medical credits of the remaining dependent is the same for every additional member.

<table>
<thead>
<tr>
<th>ASSESSMENT WORDS</th>
<th>Make clear; express in words, interpret and spell out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td>Calculate</td>
</tr>
<tr>
<td>Show</td>
<td>Do calculations to prove that the answer is correct</td>
</tr>
<tr>
<td>Verify</td>
<td>Calculate, get the answer and compare the answer with the one given</td>
</tr>
</tbody>
</table>

Example:

Mr Nhlapo is the 56 year old HOD at Mahlenga Secondary school situated at Sokhulumi. She is earning a monthly salary of R27 876.80, she is also getting a bonus that is equivalent to her monthly salary. She is also contributing 7.5% of her basic salary towards GEPF. She pays medical aid for her 2 sons.

Basic salary is the amount of money that someone earns every year in their job, not including any extra money.

Bonus is any financial compensation, reward, or return over and above what was expected by the recipient.

1. Explain why it is important to know Ms Nhlapo’s date of birth for tax calculation purposes. **Solution**
 - To identify the correct tax threshold, as the age determines the suitable tax threshold.
 - To identify the correct rebate, as the age will determine the rebate/s the person qualifies for.

Learners tend to give the tax threshold and rebate as answers without any explanation. Learners should know what is expected of them if they have to explain.
2. Use calculations to show that Ms Nhlapo qualifies to pay tax.

Solution

Annual income = \((R27\ 876.80 \times 12) + R27\ 876.80\)

\[= R334\ 521.60 + R27\ 876.80\]

\[= R362\ 398.40\]

She qualifies to pay tax because she earns an income more than R75 000.

Learners only calculate the annual income without comparing the annual income to the tax threshold and conclude if she will qualify to pay tax or not.

3. Use the tax information in tax table below to calculate the annual tax payable on Ms Nhlapo's taxable income.

Solution:

Step 1: Taxable income as calculated in 2

Step 2: Non-taxable income

GEPF: 7.5% of R334 521,60 = R25089.12

Step 3: Taxable income = R362 398,40 - R25089,12

\[= R337\ 309.28\]

Step 4:

It falls in tax bracket 3

Payable tax before rebates and medical credits

\[= 61\ 296 + 31\% \text{ of taxable income above } 293\ 600\]

\[= 61\ 296 + 31\%\ (337\ 309.28 - 293\ 600)\]

\[= R74\ 845.88\]

Step 5:

Medical credit = \([(R286 \times 2) + R192] \times 12\]

\[= R9168\]

Income tax = R74 845.88 - R9168 - R13 500

\[= R 52177.88\]

Learners only calculate the income tax before the rebate and medical credits are subtracted.

4. Ms Nhlapo claims that if she was 10 years older she would pay the monthly tax of 4911.40, verify her claim.

Solution:

Annual income tax at 66 years = 52177.88 - 7 407

\[= 44770.88\]

Monthly income tax = 44770.88 ÷ 12

\[= 3730.91\]

Her claim is correct.

Learners don’t write the conclusion, they only calculate and get the answer without validating the statement.
Rates of Tax for Individuals

2017 Tax Year (1 March 2016 - 28 February 2017)

<table>
<thead>
<tr>
<th>Taxable Income (R)</th>
<th>Rates of Tax (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 188 000</td>
<td>18% of taxable income</td>
</tr>
<tr>
<td>188 001 – 293 600</td>
<td>33 840 + 26% of taxable income above 188 000</td>
</tr>
<tr>
<td>293 601 – 406 400</td>
<td>61 296 + 31% of taxable income above 293 600</td>
</tr>
<tr>
<td>406 401 – 550 100</td>
<td>96 264 + 36% of taxable income above 406 400</td>
</tr>
<tr>
<td>550 101 – 701 300</td>
<td>147 996 + 39% of taxable income above 550 100</td>
</tr>
<tr>
<td>701 301 and above</td>
<td>206 964 + 41% of taxable income above 701 300</td>
</tr>
</tbody>
</table>

Tax Rebate 2017

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>R13 500</td>
</tr>
<tr>
<td>Secondary (65 and older)</td>
<td>R7 407</td>
</tr>
<tr>
<td>Tertiary (75 and older)</td>
<td>R2 466</td>
</tr>
</tbody>
</table>

Tax Thresholds 2017

<table>
<thead>
<tr>
<th>Person</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 65</td>
<td>R75 000</td>
</tr>
<tr>
<td>65 and older</td>
<td>R116 150</td>
</tr>
<tr>
<td>75 and older</td>
<td>R129 850</td>
</tr>
</tbody>
</table>

2016/2017 Year of Assessment (1 March 2016 - 28 February 2017)

- R286 per month for the taxpayer who paid the medical scheme contributions
- R286 per month for the first dependant
- R192 per month for each additional dependant(s)