Foreword

In order to improve learning outcomes the Department of Basic Education conducted research to determine the specific areas that learners struggle with in Grade 12 examinations. The research included a trend analysis by subject experts of learner performance over a period of five years as well as learner examination scripts in order to diagnose deficiencies or misconceptions in particular content areas. In addition, expert teachers were interviewed to determine the best practices to ensure mastery of the topic by learners and improve outcomes in terms of quality and quantity.

The results of the research formed the foundation and guiding principles for the development of the booklets. In each identified subject, key content areas were identified for the development of material that will significantly improve learner's conceptual understanding whilst leading to improved performance in the subject.

The booklets are developed as part of a series of booklets, with each booklet focusing only on one specific challenging topic. The selected content is explained in detail and include relevant concepts from Grades 10 - 12 to ensure conceptual understanding.

The main purpose of these booklets is to assist learners to master the content starting from a basic conceptual level of understanding to the more advanced level. The content in each booklet is presented in an easy to understand manner including the use of mind maps, summaries and exercises to support understanding and conceptual progression. These booklets should ideally be used as part of a focused revision or enrichment program by learners after the topics have been taught in class. The booklets encourage learners to take ownership of their own learning and focus on developing and mastery critical content and skills such as reading and higher order thinking skills.

Teachers are also encouraged to infuse the content into existing lesson preparation to ensure in-depth curriculum coverage of a particular topic. Due to the nature of the booklets covering only one topic, teachers are encouraged to ensure learners access to the booklets in either print or digital form if a particular topic is taught.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How to use this booklet</td>
<td>1</td>
</tr>
<tr>
<td>2. Study and examination tips</td>
<td>2</td>
</tr>
<tr>
<td>3. Mind map of Trigonometry</td>
<td>3</td>
</tr>
<tr>
<td>4. Content topic: Trigonometry</td>
<td>4-18</td>
</tr>
<tr>
<td>4.1 Trigonometric ratios</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Compo Sine, cosine and area rules</td>
<td>6</td>
</tr>
<tr>
<td>4.3 Trigonometric identities</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Trigonometric equations</td>
<td>13</td>
</tr>
<tr>
<td>5. Message to Grade 12 learners from the writers</td>
<td>17</td>
</tr>
<tr>
<td>6. Thank you</td>
<td>17</td>
</tr>
</tbody>
</table>
2. How to use this booklet

This booklet is designed to clarify the content prescribed for Technical Mathematics. In addition, it offers some tips on how to tackle real life problems on a daily basis. Candidates will be expected to have mastered the content prescribed for Grades 8-11.

This booklet must be used to master some mathematical rules that you may not have been aware of. The prescribed textbook must also be used.
3. Study and examination tips

All learners should be able to acquire sufficient understanding and knowledge to:

- develop fluency in computation skills without relying on the use of a calculator;
- generalise, make conjectures, and try to justify or prove them;
- develop problem-solving and cognitive skills;
- make use of the language of Technical Mathematics;
- identify, investigate and solve problems creatively and critically;
- use the properties of shapes and objects to identify, investigate and solve problems creatively and critically;
- encourage appropriate communication by using descriptions in words, graphs, symbols, tables and diagrams;
- practise Technical Mathematics every day.
4. Mind map of Trigonometry

1. Revision
 - Trig ratios
 - Reciprocals
 - Reductions

2. Trig equations

3. Trig identities

4. Trig graphs

TRIGONOMETRY
5.1. Trigonometric ratios

Important aspects of trigonometric ratios:

- Ratio means fraction. It can be expressed as $a : b$ or $\frac{a}{b}$.

- The term 'SOHCAHTOA' will you help to remember the following 3 ratios:

 \[
 \begin{align*}
 \sin \theta &= \frac{O}{H} = \frac{y}{r} \\
 \cos \theta &= \frac{A}{H} = \frac{x}{r} \\
 \tan \theta &= \frac{O}{A} = \frac{y}{x}
 \end{align*}
 \]

 Opposite $= O = y$

 Adjacent $= A = x$

 Hypotenuse $= H = r$

Note:
The following trigonometric ratios exist in right-angled triangles only:

\[
\begin{align*}
\sin \theta &= \frac{AB}{BC} \\
\cos \theta &= \frac{AC}{BC} \\
\tan \theta &= \frac{AB}{AC} \\
\csc \theta &= \frac{BC}{AB} \\
\sec \theta &= \frac{BC}{AC} \\
\cot \theta &= \frac{AC}{AB}
\end{align*}
\]

Examples
Use the diagram alongside to find the following:

<table>
<thead>
<tr>
<th>No</th>
<th>Unknown</th>
<th>Solution</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
<td>$x^2 + y^2 = r^2$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4)^2 + (3)^2 = r^2$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25 = r^2$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5 = r$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$\sin \theta$</td>
<td>$\frac{y}{r} = \frac{3}{5}$</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>$\csc \theta$</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$1 - \sin^2 \theta$</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{\sin \theta}{\cos \theta}$</td>
<td>?</td>
<td>2</td>
</tr>
</tbody>
</table>

Examples
Reduce the following angles to acute angles:

<table>
<thead>
<tr>
<th>No</th>
<th>Unknown</th>
<th>Solution</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sin 330^\circ$</td>
<td>$= \sin(360^\circ - 30^\circ)$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= -\sin 30^\circ$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$\sec 170^\circ$</td>
<td>$= \sec(180^\circ - 80^\circ)$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= -\sec 80^\circ$</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>$\cot(360^\circ - \theta)$</td>
<td>$= -\cot 30^\circ$</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>$\csc 240^\circ$</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>$\cos(360^\circ - \theta)$</td>
<td>?</td>
<td>2</td>
</tr>
</tbody>
</table>
Reciprocal identities:
\[
\begin{align*}
\sin \theta &= \frac{1}{\csc \theta} & \csc \theta &= \frac{1}{\sin \theta} \\
\cos \theta &= \frac{1}{\sec \theta} & \sec \theta &= \frac{1}{\cos \theta} \\
\tan \theta &= \frac{1}{\cot \theta} & \cot \theta &= \frac{1}{\tan \theta}
\end{align*}
\]

Complete the following:
\[
\begin{align*}
\cot \theta &= \frac{1}{\tan \theta} & \csc \theta &= \frac{1}{\sin \theta} \\
\csc \theta &= \frac{1}{\sin \theta} & \cot \theta &= \frac{1}{\tan \theta} \\
\cos \theta &= \frac{1}{\sec \theta} & \tan \theta &= \frac{1}{\cot \theta}
\end{align*}
\]

No. Activities

1. If \(\sin 54^\circ = p \), express the following in terms of \(p \), without using a calculator:
 a. \(\sin 36^\circ \)

 \[
 \sin 36^\circ = \frac{y}{r} = \sqrt{1 - p^2} = \frac{1}{\sqrt{1 - p^2}}
 \]

 Answer: \(p \sqrt{1 - p^2} \)

 Marks: 2

 b. \(\tan 54^\circ \)

 Answer: \(p \)

 Marks: 2

 c. \(\cos 36^\circ \)

 Answer: \(\frac{p}{\sqrt{1 - p^2}} \)

 Marks: 2

 d. \(\sin 594^\circ \)

 Answer: \(-p \)

 Marks: 2

2. Solve the equation, if \(A \in [-90^\circ; 0^\circ] \):
 a. \(\sec^2 A - 3 \tan A - 5 = 0 \)

 Answer: \(-45^\circ \)

 Marks: 6

3. Simplify the following:
 a. \(\frac{\sin(180^\circ - \theta)}{\sin \theta} + \frac{\cos^2 \theta + \sin^2 \theta}{2} - \frac{3 \cos(360^\circ - \theta)}{\cos(180^\circ + \theta)} \)

 Answer: \(-\frac{1}{2} \)

 Marks: 6

 b. \(\frac{\tan(180^\circ + A) \cdot \cos(180 - A) \cdot \sin(360 - A)}{\sin(180 - A)} \)

 Answer: \(\sin A \)

 Marks: 6

4. If \(\cot \theta = -\frac{3}{2} \) and \(\sin \theta > 0^\circ \) calculate, by using the sketch, the value of:
 a. \(\cos \theta \cdot \sin \theta \)

 Answer: \(-\frac{6}{13} \)

 Marks: 6
5.2 Sine, Cosine and Area Rules

Area rule

\[
\text{Area of } \triangle DGH = \frac{1}{2}dh \sin G
\]
\[
\text{Area of } \triangle DGH = \frac{1}{2}dg \sin H
\]
\[
\text{Area of } \triangle DGH = \frac{1}{2}gh \sin D
\]

Note: Use this method on non-right angled-triangles.

When to use the Sine rule?
1. When given two angles and one side, or
2. Two sides and a non-included angle.

Sine rule:

\[
\frac{\sin G}{h} = \frac{\sin H}{g} \quad \text{OR} \quad \frac{g}{\sin G} = \frac{h}{\sin H}
\]

Cosine rule

\[
m^2 = n^2 + q^2 - 2nq \cos M
\]
\[
n^2 = m^2 + q^2 - 2mq \cos N
\]
\[
q^2 = m^2 + n^2 - 2mn \cos Q
\]

When to use Cosine rule?
1. When given three sides.
2. Two sides and the included angle.
Examples of Sine and Cosine rules

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Sine rule or Cosine rule</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Calculate the length of x</td>
<td>Cosine rule</td>
<td>(a^2 = b^2 + c^2 - 2bc \cos A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x^2 = (18)^2 + (24)^2 - 2(18)(24)\cos 88^\circ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x = \sqrt{(18)^2 + (24)^2 - 2(18)(24) \cos 88^\circ})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x = 29.49 \text{ cm})</td>
</tr>
<tr>
<td>2.</td>
<td>Calculate the size of angle x.</td>
<td>Cosine rule</td>
<td>(a^2 = b^2 + c^2 - 2bc \cos A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((7,2)^2 = (8,7)^2 + (8,3)^2 - 2(8,7)(8,3)\cos x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\cos x = \frac{(8,3)^2 + (8,7)^2 - (7,2)^2}{2(8,3)(8,7)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x = 50.05^\circ)</td>
</tr>
<tr>
<td>3.</td>
<td>Calculate the length of k.</td>
<td>Sine rule</td>
<td>(\frac{\sin A}{a} = \frac{\sin B}{b})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\sin 50.5^\circ) = \sin 69^\circ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(k = \frac{8,3 \sin 50.05^\circ}{\sin 69^\circ})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(k = 6,82 \text{ cm})</td>
</tr>
<tr>
<td>4.</td>
<td>Calculate the size of angle (\theta).</td>
<td>Sine rule</td>
<td>(\frac{\sin A}{a} = \frac{\sin B}{b})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\sin \theta = \frac{\sin 88^\circ}{29,5})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\theta = \frac{18 \sin 88^\circ}{29,5})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\theta = 37.57^\circ)</td>
</tr>
</tbody>
</table>
Exercise 2.1

2.1 Calculate the size of $\angle A$.

Rule: Answer: $\angle A = 117.57^\circ$

Marks 3

2.2 Calculate $\angle C$.

Rule: Answer: $\angle C = 26.54^\circ$

Marks 3

2.3 Calculate the length of BC.

Rule: Answer: $BC = 19.31$ m or $BC = 9.65$ m

Marks 3

2.4 Calculate the size of $\angle F$.

Rule: Answer: $\angle F = 50^\circ$

Marks 3
Examples of area rule
Calculate the area for each of the following correct to 2 decimal places, where necessary:

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Sine rule or Cosine rule</th>
<th>Solution</th>
<th>Marks</th>
</tr>
</thead>
</table>
| 1. | | Area rule | $A = \frac{1}{2}ab \sin C$
$A = \frac{1}{2} (24)(18) \sin 88^\circ$
$A = 215.87 \text{ cm}^2$ | ✓ Area rule formula
✓ Substitution into correct formula
✓ Answer |
| 2. | | Cosine rule | $A \text{ of } \triangle ABC = \frac{1}{2}bc \sin A$
$A = \frac{1}{2} (100)(200) \sin 30^\circ$
$A = 5000 \text{ cm}^2$ | ✓ Area rule formula
✓ Substitution into correct formula
Answer |
| 3. | | Area rule | $A = \frac{1}{2}ab \sin C$
$A = \frac{1}{2} (8.3)(8.7) \sin 50.05^\circ$
$A = 27.68 \text{ cm}^2$ | ✓ Area rule formula
✓ Substitution into correct formula
✓ Answer |
| 4. | | Area rule | $A = \frac{1}{2}ac \sin B$
$A = \frac{1}{2} (22.9)(13.7) \sin 60$
$A = 135.85 \text{ cm}^2$ | ✓ Area rule formula
✓ Substitution into correct formula
✓ Answer |
5. Find the length of AB.

Area rule \[A = \frac{1}{2} ac \sin B \]

\[135,85 = \frac{1}{2} (22.9)(AB) \sin 60° \]

\[135,85 \times 2 \]

\[\frac{22.9 \sin 60°}{2} = AB \]

\[13,70 \text{ cm} = AB \]

Exercise on Area rule

Calculate the area for each of the following correct to 2 decimal places, where necessary:

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Rule</th>
<th>Answer</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rule:</td>
<td>(\hat{A} = 59.58 \text{ cm}^2)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Rule:</td>
<td>(\hat{C} = 93.14 \text{ cm}^2)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>Calculate the length of AC, if the area of triangle ABC is 200.92 cm(^2).</td>
<td>(AC = 34.51 \text{ cm})</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
5.3 Trigonometric identities

Trig identities are trig equations that are always true for any angle.

Study the trigonometric identities below. They are divided into two categories: quotient identity and square identities.

Quotient identity

- \(\tan \theta = \frac{\sin \theta}{\cos \theta} \)

Square identities

- \(\sin^2 \theta + \cos^2 \theta = 1 \)

From the above, the following can be done:

- \(\sin^2 \theta = 1 - \cos^2 \theta \)
- \(\cos^2 \theta = 1 - \sin^2 \theta \)

- \(1 + \tan^2 \theta = \sec^2 \theta \)
- \(1 + \cot^2 \theta = \cosec^2 \theta \)

Tips for solving trigonometric identities:

- Simplify both sides to look exactly the same as each other.
- If both sides look challenging, try to simplify both sides until they are the same.
- It is usually helpful to express \(\tan \) in terms of \(\sin \) and \(\cos \).
- Find the common denominator when fractions are added or subtracted.

Example

Use trig identity:

Simplify: \(\cos^2 \theta \cdot \tan^2 \theta \)

Explanation

\[
\begin{align*}
\text{Solution} \\
&= \cos^2 \theta \cdot \tan^2 \theta \\
&= \cos^2 \theta \cdot \frac{\sin^2 \theta}{\cos^2 \theta} \\
&= \sin^2 \theta \\
\text{Mark: } &\sin^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \\
\text{Mark: } &\frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta \\
\end{align*}
\]

(2)
Prove
\[
\frac{1 - \cos^2 \theta}{1 - \sin^2 \theta} = \tan^2 \theta
\]
\[
\text{LHS} = \frac{1 - \cos^2 \theta}{1 - \sin^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta = \text{RHS}
\]
\[
\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} = 2\csc^2 x
\]
\[
\text{LHS} = \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}
= \frac{(1 - \cos x) + (1 + \cos x)}{(1 - \cos x)(1 + \cos x)}
= \frac{1 - \cos^2 x + 1 + \cos x}{1 - \cos^2 x}
= \frac{2}{\sin^2 x}
= 2\csc^2 x
\]

Choose a side that looks complicated.

Use square identities:
\[
\sin^2 \theta = 1 - \cos^2 \theta
\]
\[
\cos^2 \theta = 1 - \sin^2 \theta
\]

Choose LHS, as it looks complicated.

Common denominator \(\checkmark\) LCD

Activities

Prove the following identities:

1. \(\sin \theta (\sin^2 \theta + \cos^2 \theta) = \sin \theta\) \(2\)
2. \(\cos x (\cot x + \tan x) = \csc x\) \(4\)
3. \(\cos^2 \theta + \tan^2 \theta + \sin^2 \theta = \sec^2 \theta\) \(4\)
4. \((1 + \cos \theta)(1 - \cos \theta) \csc \theta = \sin \theta\) \(5\)
5. \(1 - \sin \theta \cos \theta \tan \theta = \cos \theta\) \(4\)
5.4 Trigonometric equations

Prior knowledge:
Revision of definitions, reciprocals and quadrants.

Reciprocals

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>cosec</td>
</tr>
<tr>
<td>cos</td>
<td>sec</td>
</tr>
<tr>
<td>tan</td>
<td>cot</td>
</tr>
</tbody>
</table>

Quadrants

1. The first quadrant is between 0° and 90° degrees.
 All trig ratios are positive in that quadrant.

2. The second quadrant is between 90° and 180° degrees.
 Sin and cosec are positive in that quadrant.

3. The third quadrant is between 180° and 270°
 Tan and *cot* are positive in that quadrant.

4. The fourth quadrant is between 270° and 360°
 Cos and *sec* are positive in this quadrant.

Procedure to solve:

\[\sin \theta = 0.5, \theta \in [0^\circ; 360^\circ] \]
The sine ratio is positive, so you should look at where it is positive between the given intervals.

The sine ratio is positive in quadrant 1 and 2.

Then, use a calculator to get the angle, by making θ the subject of the formula and activating $\sin^{-1} 0.5$

The angle will be in first quadrant and is referred to as the reference angle. Use the same angle to find the size of the angle in the second quadrant.

If cot, sec and cosec equations are given, they need to be written in terms of their reciprocal ratios as they appear on the calculator.

Example

Solve for θ: if

\[\sin \theta = 0.5 \theta \in [0^\circ; 360^\circ] \]

The value of the ratio is positive. Sin is positive in the first and second quadrant.

\[\theta = \sin^{-1} 0.5 \]

$\theta = 30^\circ$ first quadrant

and

\[\theta = 180^\circ - 30^\circ \]

\[\theta = 150^\circ \]

Second quadrant

Marks

(2)

Explanation

(Round off the angle to two decimals.)

\[\cot \theta = -0.689 \theta \in [0^\circ; 360^\circ] \]

\[\frac{1}{\tan \theta} = -0.689 \]

\[\tan \theta = -\frac{1}{0.689} \]

\[\theta = 55.43^\circ \text{ ref angle} \]

Cot is negative in the second and fourth quadrants. Then change to its reciprocal, as cot does not appear on the calculator.

✓

✓ Writing reciprocal

✓ Reference angle
\[\therefore \theta = 180^\circ + 55,43^\circ \text{or} 360^\circ - 55,43^\circ \]
\[\therefore \theta = 235,43^\circ \quad \text{or} \quad 304,57^\circ \]

Solve for \(\theta \) : if

\[3 \cos \theta = -1,5 \theta \in [0^\circ; 360^\circ] \]
\[\cos \theta = -0,5 \]

\[\theta = \cos^{-1} 0,5 \]
\[\theta = 60^\circ \quad \text{ref. angle} \]

\[\therefore \theta = 180^\circ - 60^\circ \quad \text{or} \quad 180^\circ + 60^\circ \]
\[\therefore \theta = 120^\circ \quad \text{or} \quad 240^\circ \]

Solve for \(\theta \) : if

\[\sec(\theta - 45^\circ) = 1,302 \theta \in [0^\circ; 360^\circ] \]

First identify angles where sec is positive.

\[\frac{1}{\cos(\theta - 45^\circ)} = 1,302 \]
\[\cos(\theta - 45^\circ) = \frac{1}{1,302} \]
\[(\theta - 45^\circ) = \cos^{-1} \left(\frac{1}{1,302} \right) \]
\[\theta - 45^\circ = 39,82^\circ \quad \text{ref. angle} \]
\[\therefore \theta - 45^\circ = 39,82^\circ \text{or} 360^\circ - 39,82^\circ \]
\[\therefore \theta = 84,82^\circ \quad \text{or} \quad 320,18^\circ \]

Make tan the subject. Find the angle.

Two quadrants where tan is negative

The coefficient of the ratio must be 1, so divide by 3

Divide by 3

Use the calculator to find the reference angle

(Round off the angle to two decimals.)

First identify angles where sec is positive.

Change sec to its reciprocal.

Make the angle the subject of the formula.

Use the calculator to find the angle.

Write the angle in its quadrant.
Activities

Determine the size in each and round off the angles to two decimal place $\theta \in [0^\circ; 360^\circ]$.

<table>
<thead>
<tr>
<th>Marks</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sin \theta = 0.707$</td>
</tr>
<tr>
<td>2</td>
<td>$\cos \theta = 0.156$</td>
</tr>
<tr>
<td>3</td>
<td>$\tan \theta = 0.847$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{2} \cos \theta = -0.138$</td>
</tr>
<tr>
<td>5</td>
<td>$\cot \theta - 1 = 2.158$</td>
</tr>
<tr>
<td>6</td>
<td>$\csc(\theta + 20^\circ) = 1.145$</td>
</tr>
</tbody>
</table>
6 Message to Grade 12 learners from the writers

Technical Mathematics can be fun, as it requires you to pull together all your learning from the lower grades, in order to answer the Grade 12 examination questions. If you skipped one grade before Grade 12, I had left a void to ground the floor.

Please ensure that you know all the axioms and corollaries (rules), in order that you can answer all the questions. Answer the Technical Mathematics exemplar papers before you sit the final examinations. Write the exemplar in 3 hours and mark the script on your own using the memorandum, in order to gauge whether you are ready to sit the final paper. The memorandum is also available on the DBE website.

We assure you that this year’s final paper will be similar to those of previous years in both format and style.

7 Thank you and acknowledgements

We hope the guidance provided in this booklet helps you in your final examinations.

Mr Leonard Gumani Mudau, Mr Mongameli Mbusi, Mr Muthige Ntshengedzeni Steven, Mrs Nontobeko Tom and Mr Zulu Bhekani all wish you well.