

Funda Uphumelele National Survey:

SUMMARY

REPORT

November 2025

The Report can be referenced as follows:

Department of Basic Education. (2025). Funda Uphumelele National Survey: Summary Report. Department of Basic Education: Pretoria

Eddeation. Fretona

Published by the Department of Basic Education

222 Struben Street

Private Bag X895, Pretoria 0001

Telephone: 012 357 3000

Fax: 012 323 0601

Acknowledgements: This work was conceptualised and led the Department of Basic Education. We specifically recognition the efforts of Dr Nompumelelo Nyathi-Mohohlwane, Dr Stephen Taylor, Ms Lesang Sebaeng, Ms Zamangwe Zwane, and Ms Asanda Lobelo, Ms Maureen Modiba, and Mr Mboni Nematangari. The support from Mr Nhlanhla Nkwanyana, Ms Molebogeng Leshabane, Ms Sasabona Mabasa, Ms Lehlogonolo Malemela, Ms Lindiwe Mdali and Mr Musa Zulu are recognised amongst others.

This work would not have been possible without the support of language and literacy and language specialists from the University of Pretoria, Tshwane University of Technology, University of Venda, Rhodes University, Nelson Mandela Institute, University of Free State, University of Mpumalanga, University of South Africa, University of Stellenbosch, University of the Western Cape, Varsity College and University of KwaZulu-Natal amongst others.

Table of Contents: Background and purpose of FUNS 2 The reading challenge in South Africa 2 The development of reading benchmarks in all our languages 3 The Design of Funda Uphumelele 6 Assessment Instrument development 6 Sample design 7 9 Main results: Percentages reaching benchmarks Reaching benchmarks: Overall national results 9 Home Language Benchmark attainment by language 10 Home Language Benchmark attainment by province 11 Home Language Benchmark attainment by school poverty quintile 12 Categories of achievement in benchmarked skills 13 Gender gaps in reading outcomes 16 20 Relationships between Reading domains Letter sound recognition and word reading 20 Oral reading fluency and comprehension 21 Semantics and comprehension 22 **Interpretation of results** 24 **Next steps** 25

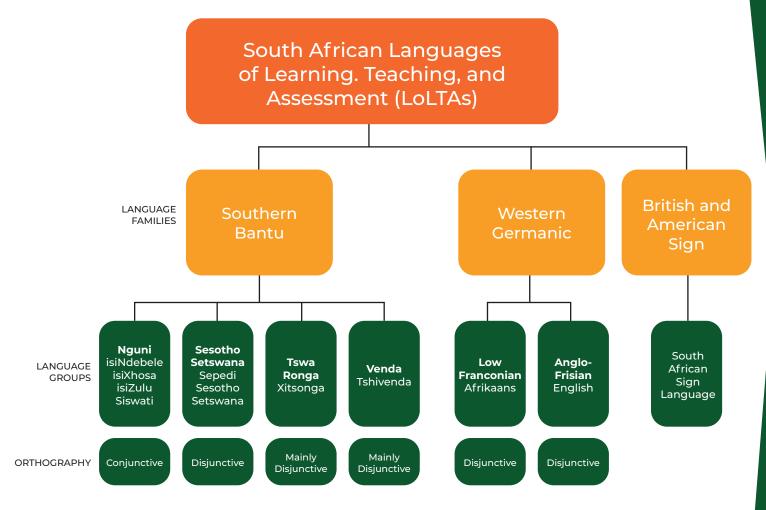
1. BACKGROUND AND PURPOSE OF FUNS

1.1 The reading challenge in South Africa

South Africa has made considerable progress on education over the last few decades. Participation rates in schooling are exceptionally high by international standards and have been continuing to increase. Similarly, the percentage of all young people completing secondary education has increased from about 40% to over 60% over the past two decades. The country's performance on international assessments of learning, such as TIMSS, PIRLS and SEACMEQ, has also increased significantly in recent years.

Despite this progress, both the PIRLS assessment and the South Africa Systemic Evaluation show that only about 20-30% of children complete their Foundation Phase education having learned to read with an adequate level of comprehension in any language. Research shows that these measures of learning are strongly predictive of later education outcomes, like reaching Grade 12. Learning to read with comprehension is a critical gateway to later learning and ultimate educational success.

But reading comprehension is itself an outcome that builds on a range of foundational literacy skills. Even the PIRLS results point to the reality that the roots of the challenge lie at an earlier stage: Only 2% of South African children reach the PIRLS High Benchmark meaning they are able to interpret, integrate and evaluate information in moderately complex texts; but only 19% reach the low benchmark meaning they are able to locate explicitly stated information and make very simple inferences.


Reading comprehension is the product of background knowledge, oral language as well as phonics and decoding. Within the phonics and decoding skills, a process of learning to associate certain sounds with symbols, blending them to develop syllables and build words, and then building sentences must be followed. Moreover, a reader needs to become fluent enough in this decoding process so that they can devote their working memory and attention to engaging with the meaning of what they are reading. One might say that reading comprehension itself is only the tip of the iceberg – that which is visible in assessments like PIRLS; but underneath the surface, a whole range of foundational skills must be learned and work together.

1.2 The development of reading benchmarks in all our languages

In some language contexts around the world, norms and benchmarks have been established to guide the development of learning foundational reading skills like letter-sound knowledge or oral reading fluency. However, until recently, such benchmarks did not exist for South African languages. This mattered since reading benchmarks cannot simply be applied from one language to another. Each language, or at least language family, has its own characteristics. For example, the Nguni languages in South Africa (isiNdebele, isiXhosa, isiZulu, Siswati) have highly conjunctive orthographies (words tend to be long and include prefixes and suffixes), while the Sesotho-Setswana language group (Sepedi, Sesotho, Setswana) are highly disjunctive. As a result, a paragraph of 10 words in isiZulu, when translated into Sepedi, may be 33 words long.

Figure 1: South African Spoken Languages of Instruction

Since 2017, the DBE has led a rigorous process of developing reading benchmarks for all our languages. This was a data driven process, in which thousands of learner assessments were analysed to understand the relationships between skills like reading fluency and comprehension. It was also a process requiring extensive language and linguistic expertise – teams of linguists for each language from across the country worked together to develop the benchmarks, as published on the DBE website.

Benchmarks were developed separately for each language. However, it turned out that the benchmarks for all the Nguni languages could be the same, and similarly the benchmarks for the Sesotho-Setswana languages (Sepedi, Sesotho and Setswana) could be the same. This decision was not assumed up front but rather was made based on observing the underlying relationships between reading accuracy, fluency and comprehension in these languages.

The benchmarks for reading skills needed to be on track to be able to read with comprehension by grade 4, in each language, are shown in Table 1. In grade 1, all languages share the same benchmark of 40 Correct Letter Sounds Per Minute (CLSPM). Since all our languages share the same alphabetic system, this benchmark could be the same for all languages.

In grades 2 and 3, the benchmarks are set based on the skill of Oral Reading Fluency (ORF), which is measured by the number of Correct Words Per Minute (CWPM) when reading a grade-appropriate passage. Now, the benchmarks differ across language groups. For example, in the Nguni languages, which have highly conjunctive orthographies.

Table 1: Reading benchmarks to be achieved by the end of each grade

	Grade 1	Grade 2	Grade 3
Nguni languages (isiNdebele, isiXhosa, isiZulu, Siswati)	40 CLSPM	20 CWPM	35 CWPM
Sesotho-Setswana (Sepedi, Sesotho, Setswana)	40 CLSPM	40 CWPM	60 CWPM
Afrikaans	40 CLSPM	45 CWPM	60 CWPM
English HL	40 CLSPM	50 CWPM	70 CWPM
Xitsonga	40 CLSPM	35 CWPM	55 CWPM
Tshivenda	40 CLSPM	35 CWPM	55 CWPM
English First Additional Language	N/A	30 CWPM	50 CWPM

Notes: CLSPM = Correct Letter sounds per minute; CWPM = Correct words per minute

Having developed benchmarks in all our languages, the DBE identified various uses of the benchmarks at the national/provincial level, at the mid-tier layer of instructional support from subject advisors and school departmental heads, and at the classroom level by teachers. These envisaged uses are shown in Table X.

Table 2: Intended use of reading benchmarks

National and Provincial Administration	Mid-tier support (Districts and School Management)	Classrooms
Defines reading proficiency (benchmarks)	Use standardised tools to assess reading across schools	Standard against which to measure reading skills
Comminates benchmarks and targets	Identify schools and classrooms needing support	Identify early on learners at risk of not learning to read
Monitor progress	Provide targeted support to schools and teachers	Adapt instruction to learner needs

One key activity at the national and provincial level is to develop a baseline estimate of the percentage of children reaching benchmarks. This is what led to the Funda Uphumelele National Survey (FUNS). The 2025 survey provides a baseline, with the intention to conduct future rounds of FUNS in 2029 and 2033. In this way, we will be able to monitor progress on those foundational literacy and reading skills needed to be on track to read with comprehension by the time learners reach grade 4. FUNS fills a key gap in the assessment landscape, shedding light on what happens between assessments like the Thrive by Five Index or the Early Learning National Assessment (ELNA), which measure school readiness, and what happens in terms of the outcome of reading comprehension, which is measured at the end of the Foundation Phase through PIRLS and the South African Systemic Evaluation.

2. THE DESIGN OF FUNDA UPHUMELELE

2.1 Assessment Instrument development

In order to assess foundational reading skills in all eleven spoken languages, a substantial amount of instrument development was needed. The approach was to build on the Early Grade Reading Assessment (EGRA) methodology in which learners are assessed individually in an oral format. The Home Language skills assessed included rapid object naming, letter sound recognition, isolated word reading, oral reading fluency, and comprehension. Some of these skills were also assessed for English as a First Additional Language (EFAL). There was also a written assessment containing a 30-minute comprehension test and a short assessment of morphological awareness, specifically semantic knowledge.

Three pilots were undertaken during 2024, each in 55 schools across six provinces and in all languages, to evaluate and refine the draft instruments. Eventually, the final instruments used in the main FUNS data collection at the start of 2025 included the range of skills depicted in Table X. The green cells indicate that the task was administered to that grade, while the greyed-out cells indicate that the task was not administered.

Table 3: Assessment tasks administered in FUNS

	Grade 1	Grade 2	Grade 3	Grade 4
Home Language orally administered		_		
Object Naming				
Letter sound recognition				
HL Words				
HL ORF1 (Passage A)				
HL ORF2 (Passage B)				
HL Comprehension1				
HL Comprehension2				
			•	
Home Language written group-based				
Written comprehension				
Semantic knowledge				
	-			
EFAL orally administered				
EFAL Words				
EFAL ORF1				
EFAL ORF2				
EFAL Comprehension1				
EFAL Comprehension2				

2.2 Sample design

The target population for FUNS was all grade 1-4 learners in South Africa South attending public ordinary schools where the Language of Learning and Teaching (LOLT) is of the 11 official spoken languages. This meant excluding all independent schools and all special needs schools.

The aim of the FUNS sampling was to ensure not only precise nationally representative statistics, but also a satisfactory level of precision and representation for every province and for every language. Therefore, the size of the learner population within each province-language combination was considered in determining the sample design. Based on the size of the learner populations in each province-language combination, a sampling design was selected in order to optimise the precision achievable for each language and for each province, but within an overall "budget" of 710 schools nationally.

The total number of schools sampled in each province-language combination is shown in Table 3. The approach was to sample at least 59 schools in each province and at least 59 schools in each language. In some provinces, this resulted in exactly 59 schools being sampled. However, in Limpopo and Mpumalanga larger samples were required because in these provinces there are certain languages which are almost exclusively spoken in them. For example, the entire Tshivenda sample had to be drawn from Limpopo, yet Sepedi and Xitsonga are also predominantly spoken in Limpopo, thus necessitating a larger overall sample for Limpopo.

Table 3: Number of schools sampled by province-language combo

LOLT	EC	FS	GP	KZN	LP	MP	NC	NW	WC	Total
Afrikaans	2	5	5				31	5	20	68
English	5	5	19	8	4	5	6	5	23	80
Isindebele					6	53				59
Isixhosa	49		2	2					16	69
Isizulu		3	10	49		5				67
Sepedi			7		42	10				59
Sesotho	3	43	8					5		59
Setswana		3	3				22	44		72
Siswati						59				59
Tshivenda					59					59
Xitsonga			5		39	15				59
Total	59	59	59	59	150	147	59	59	59	710

After schools were randomly sampled, fieldworkers used a random sampling procedure to select 10 learners in each of grades 1 to 4. The final realised sample is shown in Table 4. In all calculations of aggregate statistics, sampling weights were applied to ensure that the sampled learners count in proportion to the size of the population they represent.

Table 4: Number of learners in the sample by assessment language

LOLT	Grade 1	Grade 2	Grade 3	Grade 4	Total
English	782	775	777	772	3106
Afrikaans	676	670	658	671	2675
Tshivenda	589	588	586	569	2332
Xitsonga	580	583	591	554	2308
IsiNdebele	586	584	581	565	2316
IsiZulu	649	662	669	659	2639
IsiXhosa	659	675	680	662	2676
SiSwati	578	579	553	586	2296
Sepedi	582	585	579	547	2293
Setswana	718	712	717	714	2861
Sesotho	588	574	593	581	2336
Total	6987	6987	6984	6880	27838

Table 5 shows the average school poverty quintile by language group. Learners assessed in Sepedi and Xitsonga were, on average, drawn from the least affluent contexts, while those assessed in English and Afrikaans came from the most affluent contexts, as indicated by the average quintile status of their schools. Similarly, the Western Cape and Gauteng had the most affluent socio-economic contexts on average. This variation is important to bear in mind throughout the report when comparing reading performance across provinces and languages. Inequalities in educational outcomes largely reflect underlying socio-economic disparities rather than purely linguistic differences or the quality of provincial administration.

Table 5: Average quintile status in each language

	Grade 1	Grade 2	Grade 3	Grade 4	Total
English	4.2	4.2	4.2	4.2	4.2
Afrikaans	3.3	3.3	3.3	3.3	3.3
Tshivenda	2.1	2.1	2.1	2.1	2.1
Xitsonga	1.9	1.9	1.9	1.9	1.9
IsiNdebele	2.6	2.7	2.7	2.6	2.6
IsiZulu	2.1	2.1	2.1	2.1	2.1
IsiXhosa	2.1	2.1	2.1	2.1	2.1
SiSwati	2.4	2.4	2.4	2.4	2.4
Sepedi	1.8	1.8	1.8	1.8	1.8
Setswana	2.0	2.0	2.0	2.0	2.0
Sesotho	2.1	2.1	2.1	2.1	2.1
Total	2.8	2.8	2.8	2.8	2.8

3. MAIN RESULTS: PERCENTAGES REACHING BENCHMARKS

3.1 Reaching benchmarks: Overall national results

In Grade 1, only 31% of learners achieved the Home Language Reading Benchmark, defined as 40 correct letter sounds per minute across all languages. In Grades 2 and 3, just over 30% of learners met their respective Home Language Reading Benchmarks, which vary by language group and are based on oral reading fluency measured in words correct per minute.

By the end of Grade 4, 46% of learners were able to reach the Grade 3 Home Language Benchmark — somewhat better than Grade 3 learners (31%) but still reflecting substantial backlogs. This points to a critical concern: less than a third of children reach an adequate level of reading fluency in their Home Language by the time they transition to English as the language of instruction; and less than half of children have reached this level a year later.

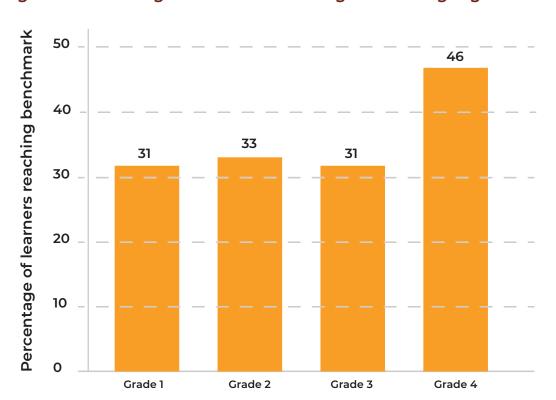
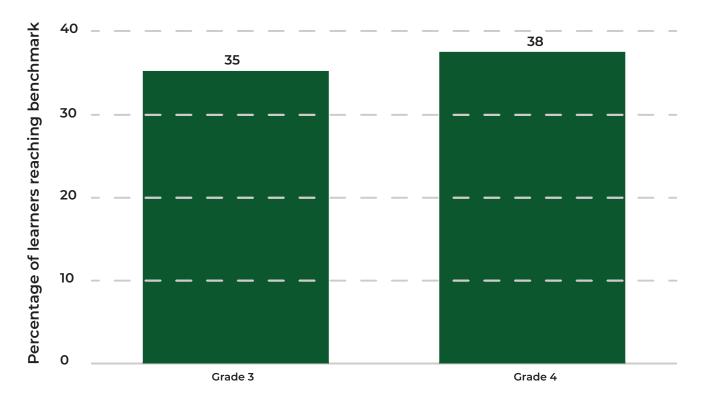



Figure 2: Percentage of learners reaching Home Language Benchmarks

Performance in EFAL (Figure 3) reading is similarly low. Only Grades 3 and 4 were assessed in EFAL through FUNS, with 35% of Grade 3 learners and 38% of Grade 4 learners achieving the benchmark of 50 and 70 correct words per minute respectively. Taken together, these findings show that by the time children enter Grade 4 and face the shift from learning in their home language to learning through English, the majority have not yet developed sufficient reading skills in either language. This motivates the need to strengthen and extend mother-tongue-based bilingual education beyond the Foundation Phase, as the DBE is currently pursuing.

Figure 2: Percentage of learners reaching EFAL Benchmarks

3.2 Home Language Benchmark attainment by language

Table 1 shows the percentage of learners across each grade and language who reached the Home Language Reading Benchmarks. In Grade 1, learners assessed in English were most likely to meet the benchmark of 40 correct letter sounds per minute, followed by learners assessed in Afrikaans and then isiXhosa. Across the grades, learners assessed in English generally performed the highest in terms of reaching the benchmark. Although English is often not the learners' home language, this advantage most likely reflects their higher average socio-economic status.

There are also notable trends across grades for specific languages. For example, relatively high proportions of isiXhosa-speaking children achieve the Grade 1 benchmark, suggesting that letter-sound recognition is fairly well taught in the Eastern Cape. However, this language group performs worse on the Grade 3 and Grade 4 benchmarks, indicating that the initial foundation of decoding skills is not adequately built on in the subsequent grades. In contrast, isiZulu-speaking children are the least likely to reach the Grade 1 benchmark in letter-sound knowledge but show substantial improvement relative to their isiXhosa counterparts by Grades 3 and 4.

One language group that consistently performed relatively well — especially given the deep rural contexts in which it is predominantly spoken — is Tshivenda. Not only did comparatively high percentages of children reach the fluency benchmarks in Tshivenda, but this group also performed relatively well on comprehension.

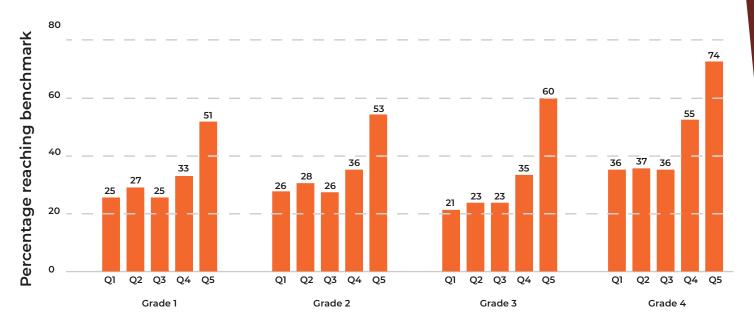
Table 5: Percentage of learners reaching HL benchmarks by language and grade

	Grade 1	Grade 2	Grade 3	Grade 4
English	40	42	48	64
Afrikaans	47	32	26	49
Tshivenda	28	44	33	45
Xitsonga	25	22	16	31
IsiNdebele	17	33	14	36
IsiZulu	12	23	31	44
IsiXhosa	37	36	19	29
SiSwati	21	33	27	41
Sepedi	30	30	11	26
Setswana	26	26	26	45
Sesotho	36	21	18	38
Total	31	33	31	46

3.3 Home Language Benchmark attainment by province

Table 6 shows the percentage of learners across the provinces reaching their Home Language Benchmarks. For most grades, the Western Cape had the largest proportion of children meeting the benchmarks — though, as with the English- and Afrikaans-speaking groups of children, this largely reflects the province's more favourable socio-economic context.

Gauteng also has a higher average socio-economic status compared to other provinces in South Africa. In Grades 1, 2, and 3, Gauteng was not performing substantially better than other provinces; however, its performance appears to improve steadily with each year. By the time learners are in Grade 4, they perform at a similarly high level to those in the Western Cape. This pattern may relate to the province's linguistic diversity: children in Gauteng are more likely to attend schools and classrooms where a variety of home languages are spoken, which may pose unique challenges in the early grades.


Table 6: Percentage of learners reaching HL benchmarks by province and grade

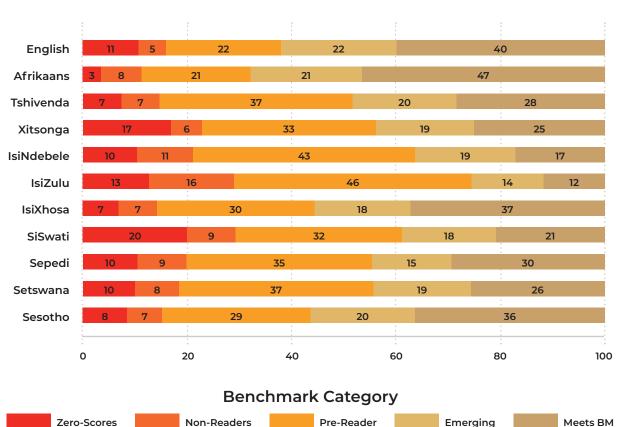
	Grade 1	Grade 2	Grade 3	Grade 4
Eastern Cape	37	30	22	30
Free State	33	22	23	41
Gauteng	34	37	37	62
Limpopo	31	30	19	31
Mpumalanga	21	30	23	36
North West	30	29	25	45
Western Cape	54	49	43	60
KwaZulu-Natal	18	30	40	50
Northern Cape	37	23	27	42
Total	31	33	31	46

3.4 Home Language Benchmark attainment by school poverty quintile

Underlying many of the differences across language groups and provinces is socio-economic status. The next figure shows the percentage of learners reaching Home Language Benchmarks by official school poverty quintile. There is a consistent pattern across all grades: learners in Quintile 1 to 3 schools (no-fee schools) perform at particularly low levels, Quintile 4 schools perform noticeably better, and a significantly larger proportion of children in Quintile 5 schools reach the benchmarks.

Figure 4: Percentage of learners reaching HL benchmarks by grade and quintile

4.


CATEGORIES OF ACHIEVEMENT IN BENCHMARKED SKILLS

It is also possible to classify achievement into more than just two categories of reaching or not reaching a particular benchmark. The analysis of FUNS data identified six categories: four categories—zero scores, non-readers, pre-readers, and emerging readers—all fall below the benchmark; learners who reach the benchmark are divided into two further categories, with "exceeds benchmark" referring to learners who have not only reached their grade-level benchmark but have also met the benchmark set for the next grade.

Figures 5 to 8 show the percentages of children falling within each of these categories by language and for each grade. For Grade 1 learners, there is no "exceeds benchmark" category. This is because the Grade 1 benchmark is based on letter-sound recognition—specifically, 40 correct letter sounds per minute. Letter-sound recognition appears to be a constrained skill: once a learner reaches the benchmark, there is limited additional benefit from becoming even faster or more fluent in identifying letter sounds. Indeed, we observe a flattening-off of letter-sound recognition in Grades 2 and 3, suggesting that once the skill is acquired in Grade 1, learners must progress to higher-order skills such as word-building and comprehension strategies.

As Figure 5 illustrates, roughly 20% of Grade 1 learners can be classified as zero scorers or non-readers, indicating that they are still particularly weak in recognising letters—a foundational decoding skill needed to begin the reading journey. A fairly large proportion of Grade 1 learners fall into the "pre-reader" category, defined as reading between six and 25 correct letter sounds per minute. Across Figures 5 to 7, learners assessed in English display the strongest distribution of achievement, with relatively large proportions not only meeting but also exceeding the benchmark. For example, 38% of Grade 3 learners assessed in English also met a higher standard of 85 words correct per minute. On the other hand, Xitsonga, Siswati and Sepedi were generally the languages with the highest percentages of learners scoring zero or falling into the non-reader category.

Figure 5: Categories of HL letter sound recognition by language – Grade 1

13

Figure 5: Categories of HL ORF achievement by language – Grade 2

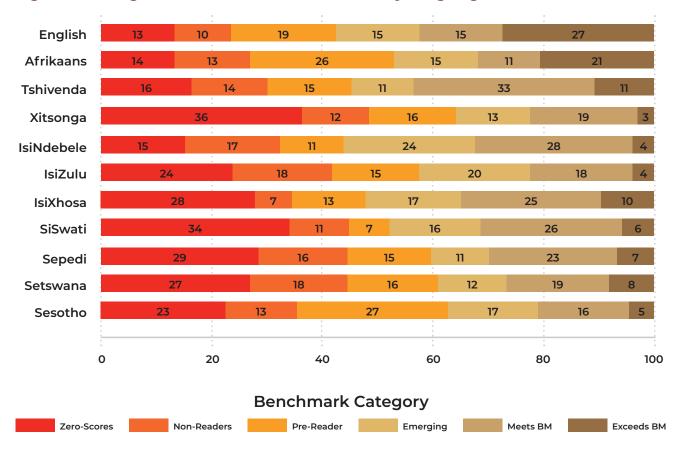


Figure 6: Categories of HL ORF achievement by language – Grade 3

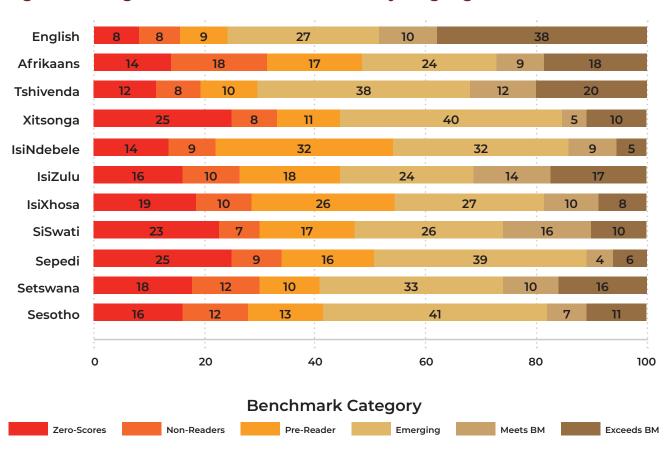
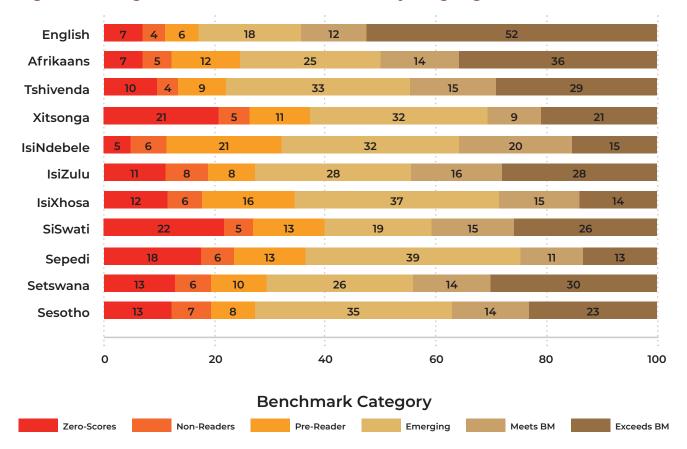



Figure 7: Categories of HL ORF achievement by language – Grade 4

5. GENDER GAPS IN READING OUTCOMES

Previous sections have already alluded to the fact that girl learners are significantly outperforming boy learners across all measures of early reading. This section presents more detailed evidence of these gender gaps. It should also be noted that FUNS is not alone in finding that girls are outperforming boys. The Progress in International Reading Literacy Study (PIRLS) of 2021 also showed that South African girls in Grade 4 were roughly a full year of learning ahead of boys in the same grade.

There is also increasing evidence that early inequalities in learning between boys and girls translate into later educational inequalities. For a number of years now, there have consistently been more female candidates in the National Senior Certificate examinations, and more female graduates from post-school education and training institutions, than males. This underscores the importance of understanding how these learning inequalities emerge and evolve during the early years of schooling.

Figure 4 shows the gender gaps in reaching reading benchmarks for each grade. In Grade 1, approximately 37% of girls reached the benchmark of 40 correct letter sounds per minute, compared to about 26% of boys. The gaps are larger in Grades 2, 3, and 4, where the benchmarks are based on oral reading fluency (words read correctly per minute).

Figure 8 presents the same analysis for each language, combining Grades 1 to 4 into a single analysis. Although girls outperform boys in all languages, the gaps are smaller among English and Afrikaans learners. Across the African languages, girls are roughly twice as likely to reach the reading benchmarks as their male counterparts.

Figure 10 confirms a similar pattern of substantial gender gaps across all nine provinces. Figure 4 shows that these gaps are largest in Quintile 1 to 3 schools, where girls are roughly twice as likely to reach the benchmarks as boys. In Quintile 5 schools, by contrast, girls are only about 17% more likely to reach the benchmark than boys.

Figure 8: Gender gaps in reaching benchmarks across grades

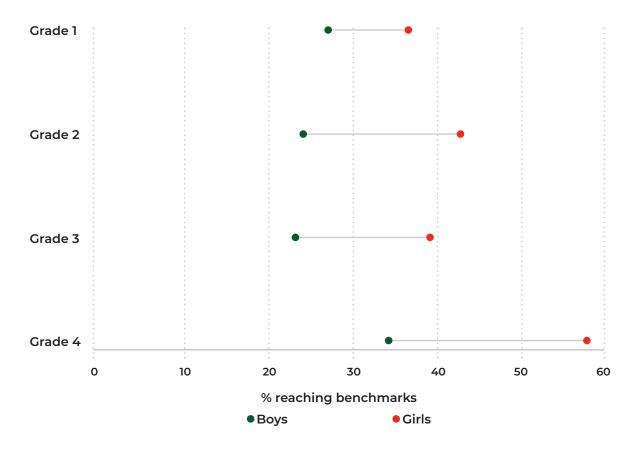


Figure 9: Gender gaps in reaching benchmarks across languages

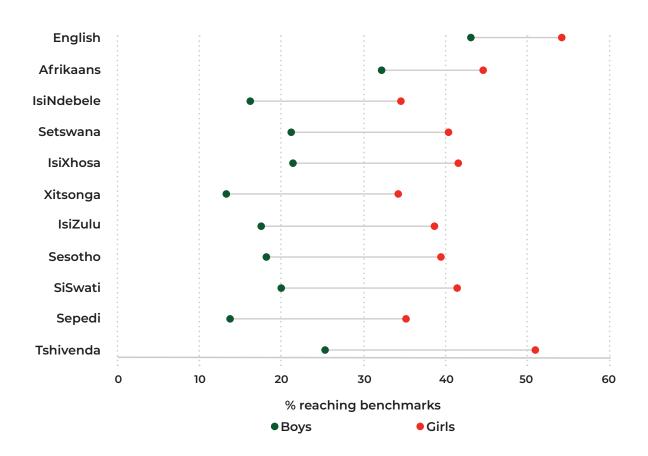


Figure 10: Gender gaps in reaching benchmarks across provinces

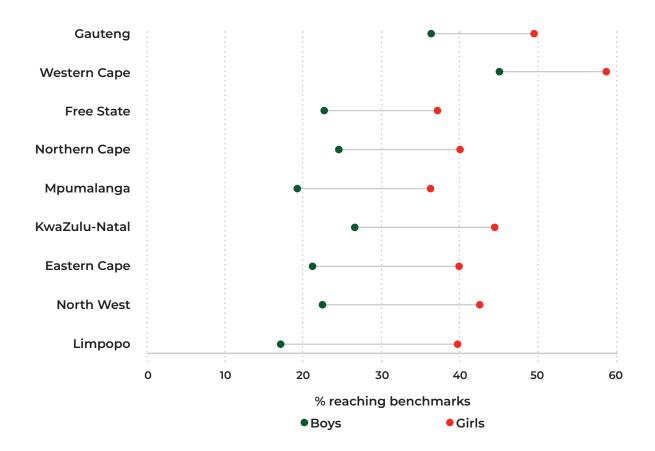


Figure 11: Gender gaps in reaching benchmarks across school poverty quintiles

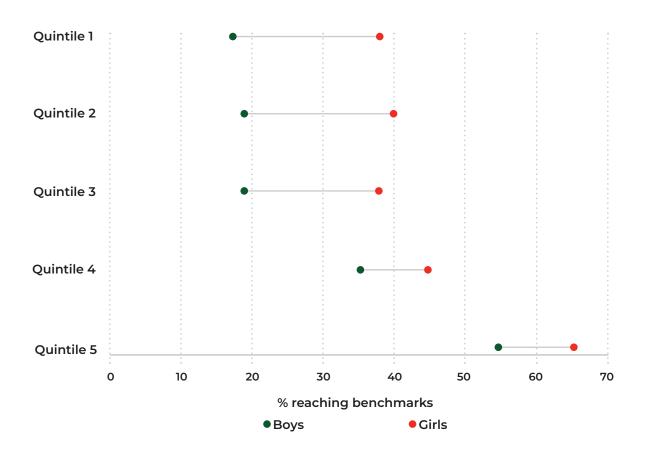
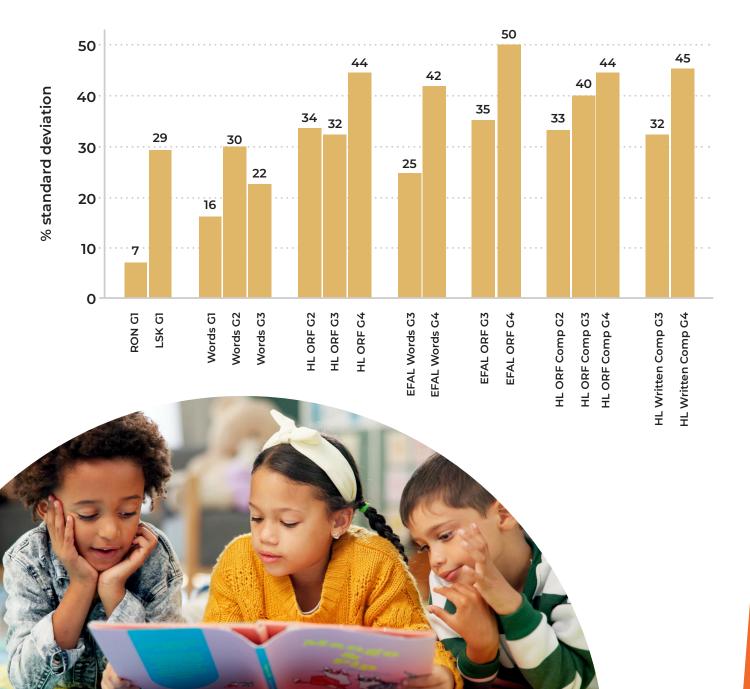
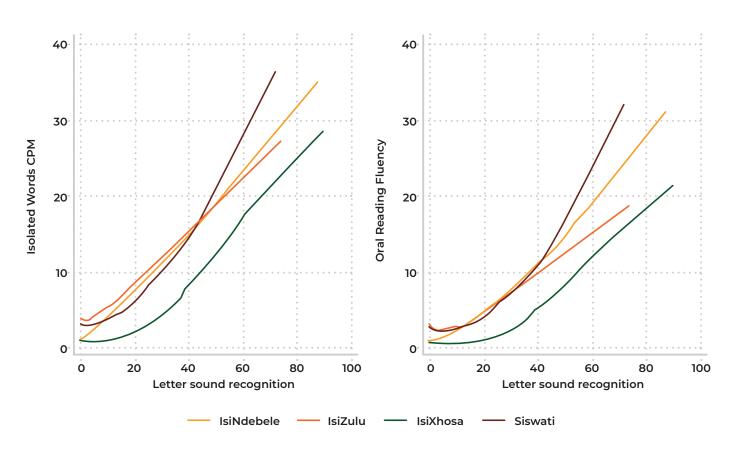



Figure 12 shows the gender gaps across a range of grades and assessment tasks, expressed as a percentage of a standard deviation on each task. For example, the gap between Grade 2 boys and girls in home-language oral reading fluency is just over 9 words read correctly per minute. Given that the standard deviation on this task is about 27 words per minute, we can say that the gender gap represents approximately 34% of a standard deviation.

The value of this approach is that it creates a metric that is comparable across tasks, which allows us to see how large the learning gaps are across different grades and tasks. A clear pattern emerges: the gender gaps widen as learners progress through the grades and as the reading skills being assessed become more complex. Rapid Object Naming shows the smallest gender gap, while letter-sound recognition in Grade 1 displays a moderate gap. However, the gender gaps become much larger in the higher grades and in tasks that demand more advanced skills, such as comprehension and reading in an additional language — in this case, English as a First Additional Language (EFAL).

A year of learning as measured by the home language ORF passage common across grades 3 and 4 is estimated to be 31% of the grade 3 standard deviation. The fact that the gender gaps observed in home language ORF are all greater than 31% of a standard deviation implies that the gender gaps on this outcome are at least equivalent to a full year of learning.

Figure 13: Gender gaps as a percentage of a standard deviation

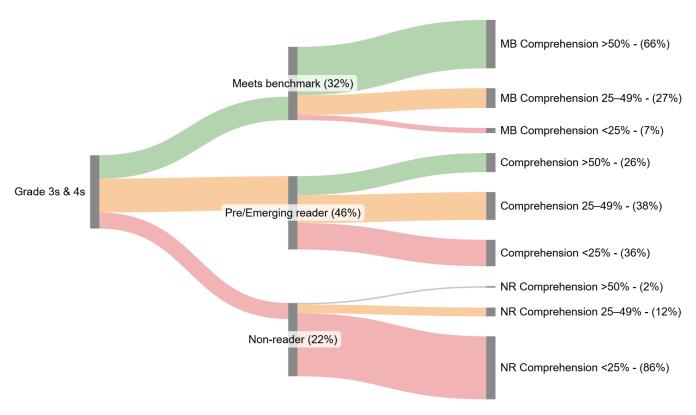

6. RELATIONSHIPS BETWEEN READING DOMAINS

6.1 Letter sound recognition and word reading

The DBE reading benchmark for Grade 1 is 40 correct letter sounds per minute. For all other grades ORF (words correct per minute when reading a grade-appropriate passage) is used. It is therefore interesting to note that the pairwise correlations between letter sound recognition and other HL tasks are significantly higher amongst Grade 1 learners (0.59-0.64) than amongst Grade 3 learners (0.33-0.45). This suggests that letter sound knowledge is important during the early stages of learning to read and supports the rationale for using letter sound knowledge as the metric for a Grade 1 benchmark.

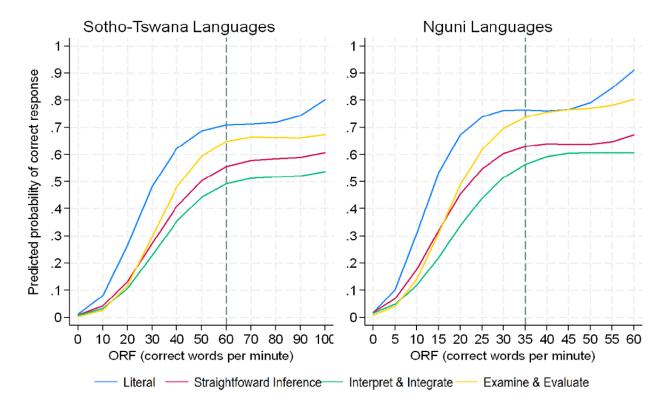
Figure 14 shows a strong relationship between letter sound recognition and word reading, whether this is isolated words or connected word reading (ORF). Only Nguni languages are shown in this figure, but the strength of this relationship holds for all languages. There is an interesting pattern for isiXhosa, which deserves further attention. It has already been seen that isiXhosa-speaking learners do relatively well in meeting the Grade 1 benchmark set against letter sounds recognition but relatively poorly in Grade 2 and 3 where ORF is used as the metric. Figure 4 further shows that a given level of letter sound recognition in isiXhosa translates into a lower level of word reading compared to other Nguni languages.

Figure 14: Relationship between LSK and 1) Words (LHS), and 2) ORF (RHS) – Nguni languages


Note: The figure is restricted to Grade 1 learners and shows Lowess smoothing lines.

6.2 Oral reading fluency and comprehension

Theoretically, one would expect a strong relationship between Oral Reading Fluency (words correct per minute) and reading comprehension. If a learner is taking too long to decode words, then by the time they eventually complete reading a sentence, it is unlikely that they would have been able to retain or engage with the meaning of the text. The goal is not to read at an exceptionally fast pace but rather to develop an adequate level of fluency to allow engagement with meaning making. This relationship emerges strongly in the FUNS data.


The Sankey diagram below shows the percentages of all Grade 3 and 4 learners who meet the fluency benchmark, who are in a pre- or emerging reader phase, or who are non-readers. Each of these three categories is then split into another three categories based on their performance in written comprehension. For learners who met the benchmark in oral reading fluency, 66% also scored above 50% in written comprehension, while only 7% scored below 25%. The opposite pattern is evident for non-readers at the bottom of the diagram: 86% of non-readers scored below 25% in comprehension, and only 2% managed to achieve more than 50%. This diagram visually confirms the importance of meeting oral reading fluency benchmarks in order to go on to read with comprehension.

At all levels of fluency, the literal items were always more likely to be answered correctly than the other types of items, while the "Interpret & Integrate" items were least likely to be correctly answered. The lines for literal items are initially steeper than the other lines implying that improvements in fluency have the largest impact on the chances of answering a literal question correctly. However, fluency strongly improves the chances of answering correctly for all item types. The lines do flatten out, however, roughly at the point where the Grade 3 benchmarks have been set. This lends support to rationale behind the fluency benchmarks: reaching these benchmarks are clearly important for reading with comprehension, but further increases in reading speed are not as strongly linked to better comprehension.

Figure 16: Predicted item score based on ORF and item type

Note: The dashed vertical lines indicate the grade 3 Home Language benchmark for Sotho-Tswana languages (60 words correct per minute) and for Nguni languages (35 words correct per minute).

6.3 Semantics and comprehension

The written assessment for Grades 3 and 4 also included 10 items focusing on semantic knowledge. These items were not administered to English- and Afrikaans-speaking learners, as they were included specifically to reflect a particular interest in morphological awareness as a lens for understanding reading development in African languages. Five items focused on knowledge of synonyms and five items on knowledge of antonyms.

Theoretically, one expects that decoding skills like oral reading fluency and oral language skills such as vocabulary or morphological awareness are largely separate factors that simultaneously work together to produce reading with comprehension. An important empirical question, therefore, is which of these distinct skills presents the more binding constraint to reading with comprehension in the South African context. It has already been shown that most children do not reach oral reading fluency benchmarks, especially in African languages, suggesting that this may be a major constraint in the current context. On the other hand, the spread of learner achievement was somewhat better for semantic knowledge. This suggests that many African language children bring relatively good vocabulary and morphological awareness to their reading development. This confirms why it is important to learn to read in the language one understands best.

Figures 17 and 18 explore the constraints to comprehension presented by oral reading fluency and semantics. Figure 17 shows the relationship between oral reading fluency and comprehension for two different groups of children: first, those with strong semantic knowledge; and second, those with weak semantic knowledge. At any given level of oral reading fluency, having strong semantic knowledge is associated with higher comprehension scores. Yet even for those with weak semantic knowledge, improvements in oral reading fluency are still associated with improvements in written comprehension.

Figure 18 shows the relationship in the opposite direction: between semantic knowledge and comprehension, for two groups of readers based on oral reading fluency. The first is a group who meet the oral reading fluency benchmark, and the second is the group of non-readers falling into the bottom two oral reading fluency categories. At any given level of semantic awareness, having strong oral reading fluency is associated with a large jump in comprehension. What is also noteworthy is that improvements in semantics among those who cannot read fluently are not associated with strong improvements in comprehension. In other words, even for children with 100% semantic awareness, their expected comprehension score is only about 20% if they cannot read fluently.

Taken together, these graphs suggest two things: first, that semantic knowledge is relatively good compared to oral reading fluency; and second, that oral reading fluency presents a more binding constraint to reading with comprehension than a lack of semantic knowledge. The implications for teaching in Grades 1 to 3 are clear: in the current situation for African languages, improving the fundamental decoding skills of reading is critical for improving reading with comprehension.

Figure 17: Relationship between ORF and comprehension if semantics is strong/weak

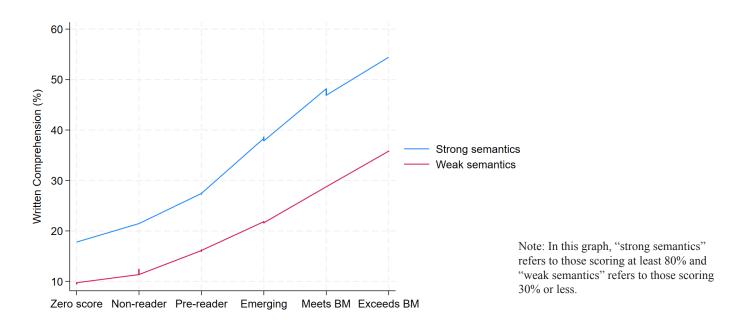
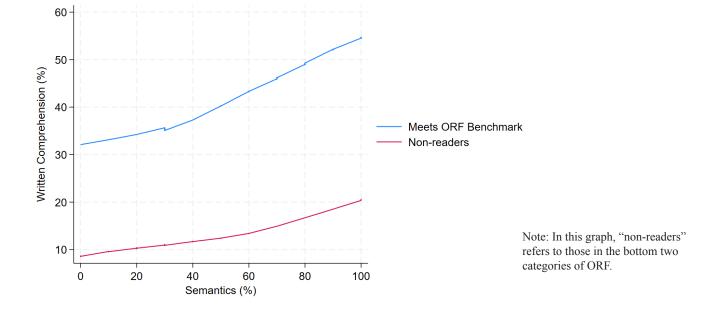



Figure 18: Relationship between semantic knowledge and comprehension if ORF is strong/weak

7.

INTERPRETATION OF RESULTS

Early measurement allows for the identification of expectations and responsibilities, empowering teachers and province to take action early. Tracking these skills over time enables the assessment of progress, particularly in constrained skills like alphabet knowledge.

The results indicate that only 31% of children achieve the letter sound recognition benchmark by the end of Grade 1, with 30-33% reaching this benchmark across Grade 1-3 in the Home Languages. These low attainment rates necessitate urgent attention.

In English as a first additional language, 35-38% of learners attain the benchmark, slightly higher than home language attainment. However, this comparison is nuanced, as benchmarks are set at a second language level.

The findings also reveal gaps in attainment related to socioeconomic status and persistent gender gaps, warranting further attention. A significant number of children scored zero, indicating an inability to read a single word per minute.

These results collectively suggest that learning challenges typically identified in the intermediate phase emerge earlier, underscoring the need for evidence-based interventions to support learners in acquiring reading skills from an early age.

Regarding morphological awareness and semantics, children demonstrate relatively high morphological awareness skills. However, no correlation exists between these skills and decoding abilities, highlighting the need for explicit instruction in decoding.

8. NEXT STEPS

While this report and the accompanying Technical report provide details at an average level nationally and provincially, further steps to engage with the findings and engage on further steps are needed. These may be summarised as follows:

- 1. Disseminating results: findings from the survey should be shared with districts and circuit-based support staff, as well as school leaders, and teachers to raise awareness and promote understanding.
- 2. Empowering teachers: coherent and consistent programmes to equip teachers with the skills to both measure emergent skills including reading fluency should be strengthened. All teachers need to be trained to identify learners who are not meeting benchmarks. As a linked aspect, teachers need support to develop their practices in remedial actions based on the specific.
- 3. Language-specific guidance: the development of the benchmarks clearly demonstrated the need to pay specific attention to each language, respectively. While there are national gaps and acknowledges the distinct features of each of the eleven languages.

By taking these steps, the goal is to drive change at the classroom level, enabling teachers to provide targeted support to learners and ultimately improve reading outcomes.

