

Assessing learning

How can classroom-based teachers assess students' competencies in numeracy?

Moses Ngware, PhD

Presentation

- Why assess?
- The approach
- Results
- Conclusion and implications

Why Assess?

- Numeracy assessment research shows various ways to measure numeracy (Reyna et al., 2009).
 - Eg. some assessment tools use personal perceptions of a person's numerical abilities (Fagerlin et al., 2007)

- But why assess? Teachers assess their students with a view to track:
 - progress,
 - -provide feedback,
 - assess student competency levels, and
 - evaluate the achievement of curriculum.

How do you fulfill the purposes of assessment

(1) A numeracy tool should reflect the math curriculum outcome areas (2) Assess the range of student numeracy abilities (3) However, the quality of a test is determined by it's psychometric properties, and not what the test items look like

The Approach (1)

(1) Assessment characteristics

- Addresses key learning areas
- –degree of difficulty (simple) item location
- -Item fit (in theory, items should fit the TCC/ICC curve)
- -fairness and discrimination in test use (DIF)
- Competence levels/benchmark against which to interpret test scores.

The Approach (2)

(2) Assessment development process

The Approach (3)

Contents	Knowledge	Comprehension	Application	Total Items
Pre-number activities (9%)	2	2	0	4
Whole Numbers (18%)	1	5	2	8
Fractions (4%)	1	1	0	2
Addition (13%)	3	2	1	6
Subtraction (11%)	2	3	0	5
Multiplication (4%)	0	2	0	2
Division (4%)	0	0	2	2
Measurement (Length, Mass, Capacity, Money, Time) (24%)	4	3	4	11
Geometry (11%)	3	1	1	5
Total Items	16	19	10	45

The Approach (4)

- 7 informal settlements (slums)from 6 major towns in Kenya
- Low cost, formal private and government primary schools within slums and within a radius of 1km from slum
- 1 stream of G3 randomly selected
- -7,648 standard 3 pupils (48% girls)

The Approach (5)

- We use Rasch procedures to show:
 - degree of difficulty (simple)
 - Item fit and person location
 - fairness and discrimination in test use
- Some Rasch requirements:
 - Items have equal discriminating power
 - Minimal guessing
 - NB: Rasch model provides diagnostic information on how well items measure what they are supposed to measure
- Competence levels/benchmark against which to interpret test scores

Fit and location of numeracy Items

Grouping the numeracy items

Mapping numeracy items

Level 4

- Recognize geometrical shapes within larger shapes
- Interprete data presented in a simple table
- Subtract 4-digit numbers with borrowing Convert days to weeks
- Place the value of a digit on a 4-digit whole number

Level 3

- Summarize multiple addition of same number by multiplication that is. N + N + N = N x 3
- Apply division of 2-digit numbers with 1-digit number (involving multiples of 9)
- Multiply single digit numbers Subtract 3-digit numbers without borrowing
- Apply addition with carrying over (up to 2-digit numbers)
- Divide 2-digit numbers with 1-digit number (involving multiples of 6)
- Divide 1-digit numbers with 1-digit number (involving multiples of 3)

Level 2

- Rank quatities or sizes in increasing or decreasing order
- Add numbers without carrying over
- Subtract numbers without borrowing (up to 2-digit numbers)
- Recognize common shapes (oval)
- Work out missing numbers in a series involving multiples of 10
- Associate units contained with the capacity of a container
- Associate metre rule with measurement of length

Level 1

- Identify values of coins
- Identify what side of a scale balance has more weight
- Recognize container with larger capacity
- Identify numbers of 100s, 10s and 1s in a 3-digit number
- Add 1-digit numbers
- Match numbers to objects (<10)
- Count objects less than 10

Distribution of numeracy scores

Conclusions and implications

- Only 3 items did not fit and will be dropped – good fit and item difficult
- Item and person parameters (level of difficult and attainment levels of pupils) had a good fit
- The tool did not discriminate by gender
- Competence levels about threequarters of pupils in competency levels 3 & 4. Does this match the NAC competency levels?

THANK YOU

@mngware